
Michael C Willis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DABSO – A Reagent to Revolutionize Organosulfur Chemistry. Synthesis, 2022, 54, 1695-1707.	1.2	29
2	Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nature Reviews Chemistry, 2022, 6, 146-162.	13.8	100
3	Diverse saturated heterocycles from a hydroacylation/conjugate addition cascade. Chemical Science, 2022, 13, 1504-1511.	3.7	1
4	A Silyl Sulfinylamine Reagent Enables the Modular Synthesis of Sulfonimidamides via Primary Sulfinamides. Organic Letters, 2022, 24, 1711-1715.	2.4	20
5	Reductantâ€Free Crossâ€Electrophile Synthesis of Di(hetero)arylmethanes by Palladiumâ€Catalyzed Desulfinative Câ^'C Coupling. Angewandte Chemie, 2022, 134, .	1.6	3
6	Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry. CheM, 2022, 8, 1137-1146.	5.8	31
7	Reductantâ€Free Crossâ€Electrophile Synthesis of Di(hetero)arylmethanes by Palladiumâ€Catalyzed Desulfinative Câ^'C Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
8	Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates. ACS Catalysis, 2022, 12, 6060-6067.	5.5	25
9	Modular Two-Step Route to Sulfondiimidamides. Journal of the American Chemical Society, 2022, 144, 11851-11858.	6.6	9
10	The 2â€₽yridyl Problem: Challenging Nucleophiles in Cross oupling Arylations. Angewandte Chemie, 2021, 133, 11168-11191.	1.6	11
11	The 2â€Pyridyl Problem: Challenging Nucleophiles in Cross oupling Arylations. Angewandte Chemie - International Edition, 2021, 60, 11068-11091.	7.2	81
12	Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation. Chemical Science, 2021, 12, 13068-13073.	3.7	2
13	Benzosultam synthesis exploiting sequential palladium-catalysed intermolecular aminosulfonylation and intramolecular sulfamidation. Tetrahedron, 2021, 83, 131988.	1.0	5
14	Sequential Catalytic Functionalization of Aryltriazenyl Aldehydes for the Synthesis of Complex Benzenes. ACS Catalysis, 2021, 11, 6091-6098.	5.5	13
15	Frontispiece: Rediscovering Sulfinylamines as Reagents for Organic Synthesis. Chemistry - A European Journal, 2021, 27, .	1.7	0
16	Rediscovering Sulfinylamines as Reagents for Organic Synthesis. Chemistry - A European Journal, 2021, 27, 8918-8927.	1.7	27
17	How do we address neglected sulfur pharmacophores in drug discovery?. Expert Opinion on Drug Discovery, 2021, 16, 1227-1231.	2.5	48
18	Exploiting Configurational Lability in Aza‣ulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angewandte Chemie - International Edition, 2021, 60, 25680-25687.	7.2	16

#	Article	IF	CITATIONS
19	Exploiting Configurational Lability in Aza‧ulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angewandte Chemie, 2021, 133, 25884.	1.6	0
20	Baseâ€Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladiumâ€Catalyzed Crossâ€Coupling Reactions. Angewandte Chemie, 2021, 133, 22635-22642.	1.6	2
21	Baseâ€Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium atalyzed Cross oupling Reactions. Angewandte Chemie - International Edition, 2021, 60, 22461-22468.	7.2	18
22	Nickel(II)-Catalyzed Addition of Aryl and Heteroaryl Boroxines to the Sulfinylamine Reagent TrNSO: The Catalytic Synthesis of Sulfinamides, Sulfonimidamides, and Primary Sulfonamides. Journal of the American Chemical Society, 2021, 143, 15576-15581.	6.6	35
23	Sulfinates from Amines: A Radical Approach to Alkyl Sulfonyl Derivatives via Donor–Acceptor Activation of Pyridinium Salts. Organic Letters, 2021, 23, 8488-8493.	2.4	36
24	¹⁸ F-Trifluoromethanesulfinate Enables Direct C–H ¹⁸ F-Trifluoromethylation of Native Aromatic Residues in Peptides. Journal of the American Chemical Society, 2020, 142, 1180-1185.	6.6	61
25	Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. Journal of the American Chemical Society, 2020, 142, 720-725.	6.6	78
26	Arylsulfonyl fluoride boronic acids: Preparation and coupling reactivity. Tetrahedron, 2020, 76, 130782.	1.0	17
27	Synthesis of Highly Fluorinated Arene Complexes of [Rh(Chelating Phosphine)] ⁺ Cations, and their use in Synthesis and Catalysis. Chemistry - A European Journal, 2020, 26, 2883-2889.	1.7	9
28	Primary Sulfonamide Synthesis Using the Sulfinylamine Reagent <i>N</i> -Sulfinyl- <i>O</i> -(<i>tert</i> -butyl)hydroxylamine, <i>t</i> -BuONSO. Organic Letters, 2020, 22, 9495-9499.	2.4	35
29	Palladium-Catalyzed Desulfinative Cross-Couplings. Trends in Chemistry, 2020, 2, 865-866.	4.4	6
30	Harnessing Sulfinyl Nitrenes: A Unified One-Pot Synthesis of Sulfoximines and Sulfonimidamides. Journal of the American Chemical Society, 2020, 142, 15445-15453.	6.6	59
31	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie, 2020, 132, 11717-11723.	1.6	24
32	Mechanistic Studies of the Palladium-Catalyzed Desulfinative Cross-Coupling of Aryl Bromides and (Hetero)Aryl Sulfinate Salts. Journal of the American Chemical Society, 2020, 142, 3564-3576.	6.6	25
33	Sulfinamide Synthesis Using Organometallic Reagents, DABSO, and Amines. Journal of Organic Chemistry, 2020, 85, 5753-5760.	1.7	42
34	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie - International Edition, 2020, 59, 11620-11626.	7.2	100
35	αâ€Amidoaldehydes as Substrates in Rhodiumâ€Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of αâ€Amidoketones. Chemistry - A European Journal, 2020, 26, 11710-11714.	1.7	3
36	Modular Sulfondiimine Synthesis Using a Stable Sulfinylamine Reagent. Journal of the American Chemical Society, 2019, 141, 13022-13027.	6.6	57

#	Article	IF	CITATIONS
37	Cyclic Alkenylsulfonyl Fluorides: Palladiumâ€Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angewandte Chemie, 2019, 131, 19035-19039.	1.6	31
38	Nickel(II)-Catalyzed Synthesis of Sulfinates from Aryl and Heteroaryl Boronic Acids and the Sulfur Dioxide Surrogate DABSO. ACS Catalysis, 2019, 9, 10668-10673.	5.5	91
39	Cyclic Alkenylsulfonyl Fluorides: Palladiumâ€Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angewandte Chemie - International Edition, 2019, 58, 18859-18863.	7.2	81
40	New catalytic reactions using sulfur dioxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 654-657.	0.8	24
41	A rhodium-catalysed Sonogashira-type coupling exploiting C–S functionalisation: orthogonality with palladium-catalysed variants. Chemical Communications, 2019, 55, 2757-2760.	2.2	7
42	Oxidative \hat{I}^2 -Câ \in "H sulfonylation of cyclic amines. Chemical Science, 2018, 9, 2295-2300.	3.7	66
43	An enamine controlling group for rhodium-catalyzed intermolecular hydroacylation. Tetrahedron, 2018, 74, 5408-5414.	1.0	7
44	Direct sulfonylation of anilines mediated by visible light. Chemical Science, 2018, 9, 629-633.	3.7	61
45	Copper-catalysed synthesis of alkylidene 2-pyrrolinone derivatives from the combination of α-keto amides and alkynes. Organic and Biomolecular Chemistry, 2018, 16, 7797-7800.	1.5	10
46	Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 2018, 140, 15916-15923.	6.6	88
47	Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. Journal of the American Chemical Society, 2018, 140, 7347-7357.	6.6	36
48	Direct Copper-Catalyzed Three-Component Synthesis of Sulfonamides. Journal of the American Chemical Society, 2018, 140, 8781-8787.	6.6	167
49	Copper-Catalyzed Synthesis of Activated Sulfonate Esters from Boronic Acids, DABSO, and Pentafluorophenol. Organic Letters, 2018, 20, 5493-5496.	2.4	59
50	Copper(<scp>i</scp>)-catalyzed sulfonylative Suzuki–Miyaura cross-coupling. Chemical Science, 2017, 8, 3249-3253.	3.7	127
51	Enantioselective Three-Component Assembly of β′-Aryl Enones Using a Rhodium-Catalyzed Alkyne Hydroacylation/Aryl Boronic Acid Conjugate Addition Sequence. Organic Letters, 2017, 19, 2734-2737.	2.4	19
52	Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed cross-coupling reactions with aryl halides. Chemical Science, 2017, 8, 4437-4442.	3.7	82
53	Exploiting rhodium-catalysed ynamide hydroacylation as a platform for divergent heterocycle synthesis. Chemical Science, 2017, 8, 7963-7968.	3.7	27
54	Oneâ€Pot, Threeâ€Component Sulfonimidamide Synthesis Exploiting the Sulfinylamine Reagent <i>N</i> â€Sulfinyltritylamine, TrNSO. Angewandte Chemie, 2017, 129, 15133-15137.	1.6	27

#	Article	IF	CITATIONS
55	Catalyst Selection Facilitates the Use of Heterocyclic Sulfinates as General Nucleophilic Coupling Partners in Palladium-Catalyzed Coupling Reactions. Organic Letters, 2017, 19, 6033-6035.	2.4	45
56	Câ îH Cyanation of 6â€Ring N ontaining Heteroaromatics. Chemistry - A European Journal, 2017, 23, 14733-14737.	1.7	31
57	Oneâ€Pot, Three omponent Sulfonimidamide Synthesis Exploiting the Sulfinylamine Reagent <i>N</i> â€Sulfinyltritylamine, TrNSO. Angewandte Chemie - International Edition, 2017, 56, 14937-14941.	7.2	70
58	Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation. Journal of the American Chemical Society, 2017, 139, 10142-10149.	6.6	50
59	A Copper(I)-Catalyzed Addition/Annulation Sequence for the Two-Component Synthesis of Î ³ -Ylidenebutenolides. Organic Letters, 2017, 19, 4556-4559.	2.4	25
60	Sequential catalysis: exploiting a single rhodium(<scp>i</scp>) catalyst to promote an alkyne hydroacylation–aryl boronic acid conjugate addition sequence. Chemical Science, 2017, 8, 536-540.	3.7	16
61	One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides. Chemical Science, 2017, 8, 1233-1237.	3.7	172
62	Toolbox study for application of hydrogen peroxide as a versatile, safe and industrially-relevant green oxidant in continuous flow mode. Green Chemistry, 2017, 19, 1439-1448.	4.6	41
63	Direct Synthesis of Highly Substituted Pyrroles and Dihydropyrroles Using Linear Selective Hydroacylation Reactions. Chemistry - A European Journal, 2016, 22, 7879-7884.	1.7	39
64	Palladium(II)â€Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redoxâ€Neutral, Phosphineâ€Free Transformation. Angewandte Chemie - International Edition, 2016, 55, 747-750.	7.2	218
65	Homogeneous rhodium(i)-catalysis in de novo heterocycle syntheses. Organic and Biomolecular Chemistry, 2016, 14, 4986-5000.	1.5	24
66	One-Pot Sulfoxide Synthesis Exploiting a Sulfinyl-Dication Equivalent Generated from a DABSO/Trimethylsilyl Chloride Sequence. Organic Letters, 2016, 18, 2086-2089.	2.4	78
67	Traceless Rhodiumâ€Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of βâ€Aryl Ketones. Chemistry - A European Journal, 2016, 22, 15624-15628.	1.7	11
68	Two-Component Assembly of Thiochroman-4-ones and Tetrahydrothiopyran-4-ones Using a Rhodium-Catalyzed Alkyne Hydroacylation/Thio-Conjugate-Addition Sequence. Organic Letters, 2016, 18, 5676-5679.	2.4	27
69	α-Amino Aldehydes as Readily Available Chiral Aldehydes for Rh-Catalyzed Alkyne Hydroacylation. Journal of the American Chemical Society, 2016, 138, 1630-1634.	6.6	49
70	Diversely Substituted Quinolines via Rhodium-Catalyzed Alkyne Hydroacylation. Organic Letters, 2016, 18, 1562-1565.	2.4	48
71	Heterocycle-derived β-S-enals as bifunctional linchpins for the catalytic synthesis of saturated heterocycles. Organic Chemistry Frontiers, 2016, 3, 625-629.	2.3	8
72	Wellâ€Đefined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes. Angewandte Chemie - International Edition, 2015, 54, 8520-8524.	7.2	47

#	Article	IF	CITATIONS
73	One-Pot Sulfonamide Synthesis Exploiting the Palladium-Catalyzed Sulfination of Aryl Iodides. Synlett, 2015, 27, 101-105.	1.0	20
74	Rh–POP Pincer Xantphos Complexes for C–S and C–H Activation. Implications for Carbothiolation Catalysis. Organometallics, 2015, 34, 711-723.	1.1	51
75	The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. Asian Journal of Organic Chemistry, 2015, 4, 602-611.	1.3	272
76	The First Stereoselective Synthesis of a Dithiane Derivative of the C18 Î ² -Diketodiene System Proposed for an Active Compound Isolated from Cantharellus cibarius (Chanterelle). Synthesis, 2015, 47, 1181-1189.	1.2	3
77	An Aryne-Based Route to Substituted Benzoisothiazoles. Organic Letters, 2015, 17, 4786-4789.	2.4	47
78	Combining Organometallic Reagents, the Sulfur Dioxide Surrogate DABSO, and Amines: A Oneâ€Pot Preparation of Sulfonamides, Amenable to Array Synthesis. Angewandte Chemie - International Edition, 2015, 54, 1168-1171.	7.2	141
79	Rediscovering the Chemistry of Sulfur Dioxide: New Developments in Synthesis and Catalysis. Synthesis, 2014, 46, 2701-2710.	1.2	129
80	DABSO-Based, Three-Component, One-Pot Sulfone Synthesis. Organic Letters, 2014, 16, 150-153.	2.4	193
81	One-pot three-component sulfone synthesis exploiting palladium-catalysed aryl halide aminosulfonylation. Chemical Science, 2014, 5, 222-228.	3.7	121
82	Palladiumâ€Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas†and Reductantâ€Free Process. Angewandte Chemie - International Edition, 2014, 53, 10204-10208.	7.2	191
83	Palladiumâ€Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas―and Reductantâ€Free Process. Angewandte Chemie, 2014, 126, 10368-10372.	1.6	49
84	Carbon–carbon bond construction using boronic acids and aryl methyl sulfides: orthogonal reactivity in Suzuki-type couplings. Chemical Science, 2013, 4, 1568.	3.7	79
85	Activating Group Recycling in Action: A Rhodium-Catalyzed Carbothiolation Route to Substituted Isoquinolines. Organic Letters, 2013, 15, 5162-5165.	2.4	49
86	Palladiumâ€Catalyzed Threeâ€Component Diaryl Sulfone Synthesis Exploiting the Sulfur Dioxide Surrogate DABSO. Angewandte Chemie - International Edition, 2013, 52, 12679-12683.	7.2	216
87	2â€Aminobenzaldehydes as Versatile Substrates for Rhodiumâ€Catalyzed Alkyne Hydroacylation: Application to Dihydroquinolone Synthesis. Angewandte Chemie - International Edition, 2013, 52, 13280-13283.	7.2	84
88	Cascade Palladium―and Copper atalysed Aromatic Heterocycle Synthesis: The Emergence of General Precursors. European Journal of Organic Chemistry, 2013, 2013, 425-441.	1.2	69
89	Traceless Chelation ontrolled Rhodium atalyzed Intermolecular Alkene and Alkyne Hydroacylation. Chemistry - A European Journal, 2013, 19, 3125-3130.	1.7	58
90	Aryl Methyl Sulfides as Substrates for Rhodium-Catalyzed Alkyne Carbothiolation: Arene Functionalization with Activating Group Recycling. Journal of the American Chemical Society, 2012, 134, 2906-2909.	6.6	133

#	Article	IF	CITATIONS
91	Palladium-catalysed aminosulfonylation of aryl-, alkenyl- and heteroaryl halides: scope of the three-component synthesis of N-aminosulfonamides. Organic and Biomolecular Chemistry, 2012, 10, 4007.	1.5	108
92	Exploring Small Bite-Angle Ligands for the Rhodium-Catalyzed Intermolecular Hydroacylation of β-S-Substituted Aldehydes with 1-Octene and 1-Octyne. ACS Catalysis, 2012, 2, 2779-2786.	5.5	55
93	Rhodium-catalysed linear-selective alkyne hydroacylation. Chemical Communications, 2012, 48, 6354.	2.2	30
94	Intermolecular Alkyne Hydroacylation. Mechanistic Insight from the Isolation of the Vinyl Intermediate That Precedes Reductive Elimination. Organometallics, 2012, 31, 5650-5659.	1.1	53
95	Copper atalyzed Tandem CN Bond Formation: An Efficient Annulative Synthesis of Functionalized Cinnolines. Angewandte Chemie - International Edition, 2012, 51, 5718-5722.	7.2	71
96	Intermolecular Hydroacylation: High Activity Rhodium Catalysts Containing Small-Bite-Angle Diphosphine Ligands. Journal of the American Chemical Society, 2012, 134, 4885-4897.	6.6	127
97	Replacing dichloroethane as a solvent for rhodium-catalysed intermolecular alkyne hydroacylation reactions: the utility of propylene carbonate. Green Chemistry, 2011, 13, 1980.	4.6	44
98	<i>O</i> -Substituted Alkyl Aldehydes for Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Utility of Methylthiomethyl Ethers. Organic Letters, 2011, 13, 998-1000.	2.4	48
99	DABCO- <i>Bis</i> (sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Organic Letters, 2011, 13, 4876-4878.	2.4	254
100	Exploring (Ph2PCH2CH2)2E Ligand Space (E = O, S, PPh) in RhI Alkene Complexes as Potential Hydroacylation Catalysts. European Journal of Inorganic Chemistry, 2011, 2011, 5558-5565.	1.0	11
101	Rhodiumâ€Catalyzed Branchedâ€Selective Alkyne Hydroacylation: A Ligandâ€Controlled Regioselectivity Switch. Angewandte Chemie - International Edition, 2011, 50, 5134-5138.	7.2	75
102	An Alkyne Hydroacylation Route to Highly Substituted Furans. Angewandte Chemie - International Edition, 2011, 50, 10657-10660.	7.2	112
103	Rhodium-catalyzed enantioselective intermolecular hydroacylation reactions. Pure and Applied Chemistry, 2011, 83, 577-585.	0.9	36
104	Rhodiumâ€Catalysed Intermolecular Alkyne Hydroacylation: The Enantioselective Synthesis of α―and βâ€Substituted Ketones by Kinetic Resolution. Chemistry - A European Journal, 2010, 16, 10950-10954.	1.7	42
105	Catalytic Intramolecular Ketone Hydroacylation: Enantioselective Synthesis of Phthalides. Angewandte Chemie - International Edition, 2010, 49, 6026-6027.	7.2	39
106	Controlling Selectivity in Intermolecular Alkene or Aldehyde Hydroacylation Reactions Catalyzed by {Rh(L ₂)} ⁺ Fragments. Organometallics, 2010, 29, 1717-1728.	1.1	68
107	Palladium-Catalyzed Aminosulfonylation of Aryl Halides. Journal of the American Chemical Society, 2010, 132, 16372-16373.	6.6	289
108	Transition Metal Catalyzed Alkene and Alkyne Hydroacylation. Chemical Reviews, 2010, 110, 725-748.	23.0	690

#	Article	IF	CITATIONS
109	Intermolecular rhodium catalyzed hydroacylation of allenes: the regioselective synthesis of β,γ-unsaturated ketones. Tetrahedron, 2009, 65, 5110-5117.	1.0	37
110	Cascade Palladium-Catalyzed Alkenyl Aminocarbonylation/ Intramolecular Aryl Amidation: An Annulative Synthesis of 2-Quinolones. Organic Letters, 2009, 11, 583-586.	2.4	107
111	Palladium-catalyzed aryl halide carbonylation–intramolecular O-enolate acylation: efficient isocoumarin synthesis, including the synthesis of thunberginol A. Chemical Communications, 2009, , 6744.	2.2	53
112	Intermolecular Alkene and Alkyne Hydroacylation with β‣‣ubstituted Aldehydes: Mechanistic Insight into the Role of a Hemilabile P–O–P Ligand. Chemistry - A European Journal, 2008, 14, 8383-8397.	1.7	102
113	Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity. Chemical Communications, 2008, , 5025.	2.2	44
114	Catalytic Enantioselective Intermolecular Hydroacylation: Rhodium-Catalyzed Combination of β- <i>S</i> -Aldehydes and 1,3-Disubstituted Allenes. Journal of the American Chemical Society, 2008, 130, 17232-17233.	6.6	146
115	Palladium-Catalyzed Coupling of Ammonia and Hydroxide with Aryl Halides: The Direct Synthesis of Primary Anilines and Phenols. Angewandte Chemie - International Edition, 2007, 46, 3402-3404.	7.2	145
116	Rhodium-Catalyzed Intermolecular Chelation Controlled Alkene and Alkyne Hydroacylation:  Synthetic Scope of β-S-Substituted Aldehyde Substrates. Journal of Organic Chemistry, 2006, 71, 5291-5297.	1.7	74
117	Tandem Palladium-Catalyzed Urea Arylationâ`'Intramolecular Ester Amidation:  Regioselective Synthesis of 3-Alkylated 2,4-Quinazolinediones. Organic Letters, 2006, 8, 5089-5091.	2.4	79
118	A Second-Generation Catalyst for Intermolecular Hydroacylation of Alkenes and Alkynes Using β-S-Substituted Aldehydes: The Role of a Hemilabile P-O-P Ligand. Angewandte Chemie - International Edition, 2006, 45, 7618-7622.	7.2	138
119	Chelating Phosphane–Boranes as Hemilabile Ligands – Synthesis of[Mn(CO)3(η2-H3B·dppm)][BArF4] and [Mn(CO)4(η1-H3B·dppm)][BArF4]. European Journal of Inorganic Chemistry, 2006, 2006, 4068-4073.	1.0	18
120	Palladium-Catalyzed Tandem Alkenyl and Aryl C?N Bond Formation: A Cascade N-Annulation Route to 1-Functionalized Indoles. Angewandte Chemie - International Edition, 2005, 44, 403-406.	7.2	182
121	The Direct Catalytic Enantioselective Synthesis of Protected Aryl ?-Hydroxy-?-Amino Acids. Angewandte Chemie - International Edition, 2005, 44, 1543-1545.	7.2	97
122	Efficient Palladium-Catalysed Enamide Synthesis from Enol Triflates and Enol Tosylates. Synthesis, 2005, 2005, 3229-3234.	1.2	59
123	Rhodium-Catalyzed Reductive Aldol Reactions Using Aldehydes as the Stoichiometric Reductants. Journal of the American Chemical Society, 2005, 127, 18012-18013.	6.6	49
124	Chelation-Controlled Intermolecular Alkene and Alkyne Hydroacylation: The Utility of β-Thioacetal Aldehydes. Organic Letters, 2005, 7, 2249-2251.	2.4	76
125	A new reactivity pattern for vinyl bromides: cine-substitution via palladium catalysed C–N coupling/Michael addition reactions. Organic and Biomolecular Chemistry, 2005, 3, 3094.	1.5	34
126	Enantioselective Suzuki Reactions: Catalytic Asymmetric Synthesis of Compounds Containing Quaternary Carbon Centers. Angewandte Chemie - International Edition, 2004, 43, 1249-1251.	7.2	93

#	Article	IF	CITATIONS
127	Chelation-Controlled Intermolecular Hydroacylation: Direct Addition of Alkyl Aldehydes to Functionalized Alkenes. Angewandte Chemie - International Edition, 2004, 43, 340-343.	7.2	128
128	Palladium-Catalyzed IntramolecularO-Arylation of Enolates:  Application to Benzo[b]furan Synthesis. Organic Letters, 2004, 6, 4755-4757.	2.4	114
129	Palladium catalysed aryl enol ether synthesis from vinyl triflatesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b307574e/. Chemical Communications, 2003, , 2222.	2.2	35
130	Palladium catalysed aryl enol ether synthesis from vinyl triflates. Chemical Communications, 2003, , 2222-3.	2.2	2
131	Tandem intermolecular Suzuki coupling/intramolecular vinyl triflate–arene couplingElectronic supplementary information (ESI) available: experimental and crystallographic data for compound 5. See http://www.rsc.org/suppdata/cc/b2/b200692h/. Chemical Communications, 2002, , 832-833.	2.2	18
132	Intermolecular hydroacylation of acrylate esters: a new route to 1,4-dicarbonyls. Chemical Communications, 2001, , 2558-2559.	2.2	56
133	Chelating Monoborane Phosphines:  Rational and High-Yield Synthesis of [(COD)Rh{(η2-BH3)Ph2PCH2PPh2}][PF6] (COD = 1,5-cyclooctadiene). Organometallics, 2001, 20, 4434-4436.	1.1	48