
Matthew Riopel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes, 2022, 71, 1508-1524.	0.3	1
2	TAZ Is a Negative Regulator of PPARÎ ³ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Glucose Tolerance. Cell Metabolism, 2020, 31, 162-173.e5.	7.2	61
3	Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism. Molecular Metabolism, 2020, 41, 101039.	3.0	12
4	Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Science Advances, 2019, 5, eaaw4176.	4.7	20
5	Microbiota-Produced <i>N</i> -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes, 2019, 68, 1415-1426.	0.3	23
6	CX3CL1-Fc treatment prevents atherosclerosis in Ldlr KO mice. Molecular Metabolism, 2019, 20, 89-101.	3.0	21
7	Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Î ² Cell Proliferation and Function in Obesity. Cell Metabolism, 2019, 29, 457-474.e5.	7.2	173
8	Knockdown of ANT2 reduces adipocyte hypoxia and improves insulin resistance in obesity. Nature Metabolism, 2019, 1, 86-97.	5.1	71
9	Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. Journal of Clinical Investigation, 2018, 128, 1458-1470.	3.9	27
10	The Protein Phosphatase PHLPP1 Suppresses Insulin Signaling and Inflammation in Mouse Model. FASEB Journal, 2018, 32, 670.55.	0.2	0
11	Letrozole Treatment of Pubertal Female Mice Results in Impaired Insulin Action in Skeletal Muscle. FASEB Journal, 2018, 32, lb382.	0.2	Ο
12	Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell and Tissue Research, 2017, 368, 487-501.	1.5	24
13	Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate InÂVivo and InÂVitro Insulin Sensitivity. Cell, 2017, 171, 372-384.e12.	13.5	858
14	Critical role of β1 integrin in postnatal beta-cell function and expansion. Oncotarget, 2017, 8, 62939-62952.	0.8	16
15	β-cell insulin receptor deficiency during <i>in utero</i> development induces an islet compensatory overgrowth response. Oncotarget, 2016, 7, 44927-44940.	0.8	8
16	A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia, 2015, 58, 654-665.	2.9	23
17	Fibrin supports human fetal islet-epithelial cell differentiation via p70s6k and promotes vascular formation during transplantation. Laboratory Investigation, 2015, 95, 925-936.	1.7	5
18	Fibrin, a Scaffold Material for Islet Transplantation and Pancreatic Endocrine Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 34-44.	2.5	45

#	Article	IF	CITATIONS
19	Ultrastructural and immunohistochemical analysis of the 8-20 week human fetal pancreas. Islets, 2014, 6, e982949.	0.9	44
20	Fibrin improves beta (INS-1) cell function, proliferation and survival through integrin αvβ3. Acta Biomaterialia, 2013, 9, 8140-8148.	4.1	26
21	Inhibition of Gsk3β activity improves β-cell function in c-Kit male mice. Laboratory Investigation, 2012, 92, 543-555.	1.7	40