
Anne Sophie Voisin-chiret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. European Journal of Medicinal Chemistry, 2017, 139, 153-167.	2.6	167
2	First Identification of Boronic Species as Novel Potential Inhibitors of the <i>Staphylococcus aureus</i> NorA Efflux Pump. Journal of Medicinal Chemistry, 2014, 57, 2536-2548.	2.9	63
3	Hot-Spots of Mcl-1 Protein. Journal of Medicinal Chemistry, 2020, 63, 928-943.	2.9	57
4	Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives. European Journal of Medicinal Chemistry, 2015, 95, 185-198.	2.6	51
5	Nutrient Requirements during Pregnancy and Lactation. Nutrients, 2021, 13, 692.	1.7	45
6	First Evidence That Oligopyridines, α-Helix Foldamers, Inhibit Mcl-1 and Sensitize Ovarian Carcinoma Cells to Bcl-x _L -Targeting Strategies. Journal of Medicinal Chemistry, 2015, 58, 1644-1668.	2.9	40
7	A general synthesis of halo-oligopyridines. The Garlanding concept. Tetrahedron, 2009, 65, 607-612.	1.0	35
8	Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death and Differentiation, 2020, 27, 117-129.	5.0	31
9	Strategies to Reduce the Onâ€Target Platelet Toxicity of Bclâ€x _L Inhibitors: PROTACs, SNIPERs and Prodrugâ€Based Approaches. ChemBioChem, 2022, 23, .	1.3	27
10	Synthesis of dihalo bi- and terpyridines by regioselective Suzuki–Miyaura cross-coupling reactions. Tetrahedron, 2009, 65, 5413-5417.	1.0	26
11	Synthesis of 3,3-Diarylazetidines by Calcium(II)-Catalyzed Friedel–Crafts Reaction of Azetidinols with Unexpected Cbz Enhanced Reactivity. Organic Letters, 2019, 21, 300-304.	2.4	26
12	Synthesis of new phenylpyridyl scaffolds using the Garlanding approach. Tetrahedron, 2010, 66, 8000-8005.	1.0	24
13	Design and synthesis of thienylpyridyl garlands as non-peptidic alpha helix mimetics and potential protein–protein interactions disruptors. Tetrahedron, 2011, 67, 6145-6154.	1.0	24
14	Structural Characterizations of Oligopyridyl Foldamers, α-Helix Mimetics. Journal of Chemical Information and Modeling, 2012, 52, 429-439.	2.5	15
15	Synthesis of new linear poly(phenylpyridyl) chains. Tetrahedron, 2012, 68, 1910-1917.	1.0	14
16	Toward Understanding Mcl-1 Promiscuous and Specific Binding Mode. Journal of Chemical Information and Modeling, 2017, 57, 2885-2895.	2.5	13
17	Catalytic Friedel rafts Reactions on Saturated Heterocycles and Small Rings for sp ³ â€sp ² Coupling of Medicinally Relevant Fragments. European Journal of Organic Chemistry, 2019, 2019, 5385-5395.	1.2	13
18	Structure-guided design of pyridoclax derivatives based on Noxa / Mcl-1 interaction mode. European Journal of Medicinal Chemistry, 2018, 159, 357-380.	2.6	12

#	Article	IF	CITATIONS
19	Tau protein aggregation: Key features to improve drug discovery screening. Drug Discovery Today, 2022, 27, 1284-1297.	3.2	12
20	Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. International Journal of Pharmaceutics, 2020, 587, 119655.	2.6	11
21	Azobenzene Photoswitches in Proteolysis Targeting Chimeras: Photochemical Control Strategies and Therapeutic Benefits. ChemistrySelect, 2022, 7, .	0.7	11
22	Insights into Mcl-1 Conformational States and Allosteric Inhibition Mechanism from Molecular Dynamics Simulations, Enhanced Sampling, and Pocket Crosstalk Analysis. Journal of Chemical Information and Modeling, 2020, 60, 3172-3187.	2.5	9
23	Targeting the BH3 Domain of Bcl-2 Family Proteins. A Brief History From Natural Products to Foldamers As Promising Cancer Therapeutic Avenues. Current Medicinal Chemistry, 2013, 20, 2964-2978.	1.2	9
24	Aromatic garlands, as new foldamers, to mimic protein secondary structure. Tetrahedron, 2012, 68, 4381-4389.	1.0	7
25	Conformation Control of Abiotic α-Helical Foldamers. Journal of Chemical Information and Modeling, 2013, 53, 2671-2680.	2.5	7
26	Br vs. TsO Chemoselective Suzuki–Miyaura Crossâ€Coupling Reaction on Nicotinaldehyde Moiety for the Preparation of 2,3,5â€Trisubstituted Pyridines. European Journal of Organic Chemistry, 2020, 2020, 3640-3649.	1.2	7
27	Using halo (het) arylboronic species to achieve synthesis of foldamers as protein–protein interaction disruptors. Pure and Applied Chemistry, 2012, 84, 2467-2478.	0.9	6
28	Microplate assay for lipophilicity determination using intrinsic fluorescence of drugs: Application to a promising anticancer lead, pyridoclax. European Journal of Pharmaceutical Sciences, 2019, 131, 75-83.	1.9	6
29	Noncellular screening for the discovery of protein–protein interaction modulators. Drug Discovery Today, 2020, 25, 1592-1603.	3.2	6
30	Binding mode of Pyridoclax to myeloid cell leukemia-1 (Mcl-1) revealed by nuclear magnetic resonance spectroscopy, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4162-4178.	2.0	4
31	Synthesis of Pyridoclax Analogues: Insight into Their Druggability by Investigating Their Physicochemical Properties and Interactions with Membranes. ChemMedChem, 2020, 15, 136-154.	1.6	4
32	Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1. Journal of Chemical Information and Modeling, 2021, 61, 5581-5588.	2.5	3
33	Drug Repurposing: Deferasirox Inhibits the Anti-Apoptotic Activity of Mcl-1. Drug Design, Development and Therapy, 2021, Volume 15, 5035-5059.	2.0	2
34	Structural revision of the Mcl-1 inhibitor MIM1. Synthesis and biological studies on ovarian cancer cells with evaluation of designed analogues. Organic and Biomolecular Chemistry, 2021, 19, 8968-8987.	1.5	1
35	Synthesis and biological evaluation of FJ-809, a compound originally described as MIM1 and inhibitor of the anti-apoptotic protein Mcl-1 New Journal of Chemistry, 0, , .	1.4	0