Elisabeth Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2698232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
2	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	18.8	745
3	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
4	Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.	18.8	225
5	Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 2017, 23, 2660-2671.	9.5	171
6	Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology, 2013, 19, 64-74.	9.5	143
7	Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science, 2011, 180, 157-167.	3.6	133
8	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
9	The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Research, 2010, 29, 58-74.	1.6	98
10	Warmer Shorter Winters Disrupt Arctic Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 271-295.	8.3	96
11	Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry, 2015, 124, 81-94.	3.5	90
12	Plant recruitment in the High Arctic: Seed bank and seedling emergence on Svalbard. Journal of Vegetation Science, 2004, 15, 115-124.	2.2	86
13	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	7.8	79
14	When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190573.	2.6	75
15	High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environmental Research Letters, 2016, 11, 125006.	5.2	66
16	Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic <scp>S</scp> valbard. Ecology and Evolution, 2013, 3, 2586-2599.	1.9	65
17	Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation. Remote Sensing, 2016, 8, 847.	4.0	57
18	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57

Elisabeth Cooper

#	Article	IF	CITATIONS
19	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	12.8	56
20	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
21	Annual growth of <i>Cassiope tetragona</i> as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Clobal Change Biology, 2009, 15, 1703-1715.	9.5	51
22	Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies. Global Biogeochemical Cycles, 2010, 24, .	4.9	51
23	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
24	Germinability of arctic plants is high in perceived optimal conditions but low in the field. Botany, 2011, 89, 337-348.	1.0	45
25	Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes. PLoS ONE, 2014, 9, e86281.	2.5	45
26	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	2.3	43
27	Deepened winter snow increases stem growth and alters stem <i>δ</i> ¹³ C and <i>δ</i> ¹⁵ N in evergreen dwarf shrub <i>Cassiope tetragona</i> in high-arctic Svalbard tundra. Environmental Research Letters, 2015, 10, 044008.	5.2	39
28	Growth and Reproductive Responses of <i>Cassiope tetragona</i> , a Circumpolar Evergreen Shrub, to Experimentally Delayed Snowmelt. Arctic, Antarctic, and Alpine Research, 2011, 43, 404-409.	1.1	36
29	High Arctic flowering phenology and plant–pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters, 2016, 11, 115006.	5.2	35
30	A comparison of annual and seasonal carbon dioxide effluxes between sub-Arctic Sweden and High-Arctic Svalbard. Polar Research, 2010, 29, 75-84.	1.6	34
31	Longâ€ŧerm experimentally deepened snow decreases growingâ€season respiration in a low―and highâ€arctic tundra ecosystem. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1236-1248.	3.0	34
32	Cold-season soil respiration in response to grazing and warming in High-Arctic Svalbard. Polar Research, 2010, 29, 46-57.	1.6	30
33	Ectomycorrhizal and saprotrophic fungi respond differently to longâ€ŧerm experimentally increased snow depth in the High Arctic. MicrobiologyOpen, 2016, 5, 856-869.	3.0	30
34	Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biology and Biochemistry, 2019, 135, 222-234.	8.8	29
35	Out of Sight, Out of Mind: Thermal Acclimation of Root Respiration in Arctic Ranunculus. Arctic, Antarctic, and Alpine Research, 2004, 36, 308-313.	1.1	26
36	Dead or Alive; or Does It Really Matter? Level of Congruency Between Trophic Modes in Total and Active Fungal Communities in High Arctic Soil. Frontiers in Microbiology, 2018, 9, 3243.	3.5	23

Elisabeth Cooper

#	Article	IF	CITATIONS
37	Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. Journal of Vegetation Science, 2019, 30, 857-867.	2.2	20
38	Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry, 2021, 160, 108356.	8.8	17
39	Polar desert vegetation and plant recruitment in murchisonfjord, nordaustlandet, svalbard. Geografiska Annaler, Series A: Physical Geography, 2011, 93, 243-252.	1.5	14
40	Winter Ecosystem Respiration and Sources of CO ₂ From the High Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2627-2642.	3.0	14
41	Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Science of the Total Environment, 2019, 646, 158-167.	8.0	13
42	Aphid–willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance. Global Change Biology, 2013, 19, 3698-3708.	9.5	12
43	Freeze–thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils. Polar Biology, 2016, 39, 2387-2401.	1.2	10
44	A distributed time-lapse camera network to track vegetation phenology with high temporal detail and at varying scales. Earth System Science Data, 2021, 13, 3593-3606.	9.9	8
45	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
46	Increased snow and cold season temperatures alter High Arctic parasitic fungi – host plant interactions. Arctic Science, 0, , 1-27.	2.3	5
47	The seasonal dynamics of a High Arctic plant–visitor network: temporal observations and responses to delayed snow melt. Arctic Science, 2022, 8, 786-803.	2.3	5
48	Natural variation in snow depth and snow melt timing in the High Arctic have implications for soil and plant nutrient status and vegetation composition. Arctic Science, 2022, 8, 767-785.	2.3	5
49	Onset of autumn senescence in High Arctic plants shows similar patterns in natural and experimental snow depth gradients. Arctic Science, 2022, 8, 744-766.	2.3	4
50	Habitat determines plant community responses to climate change in the High Arctic. Arctic Science, 0, ,	2.3	2
51	Multi-Sensor Analysis of Snow Seasonality and a Preliminary Assessment of SAR Backscatter Sensitivity to Arctic Vegetation: Limits and Capabilities. Remote Sensing, 2022, 14, 1866.	4.0	2
52	Introduction to a special section: winter terrestrial ecology in Arctic and alpine tundra. Polar Research, 2010, 29, 36-37.	1.6	1
53	Towards a JÅmon food database: construction, analysis and implications for Hokkaido and the Ryukyu Islands, Japan. World Archaeology, 2022, 54, 390-406.	1.1	1