Patrick Van Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697756/publications.pdf

Version: 2024-02-01

623734 610901 32 600 14 24 citations g-index h-index papers 32 32 32 577 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LoRa Signal Synchronization and Detection at Extremely Low Signal-to-Noise Ratios. IEEE Internet of Things Journal, 2022, 9, 8869-8882.	8.7	4
2	Bluetooth-Low-Energy-Based Fall Detection and Warning System for Elderly People in Nursing Homes. Journal of Sensors, 2022, 2022, 1-14.	1.1	8
3	Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking. Sensors, 2022, 22, 4077.	3.8	3
4	LoRa Base-Station-to-Body Communication With SIMO Front-to-Back Diversity. IEEE Transactions on Antennas and Propagation, 2021, 69, 397-405.	5.1	10
5	High-voltage synthetic inductor for vibration damping in resonant piezoelectric shunt. JVC/Journal of Vibration and Control, 2021, 27, 2047-2057.	2.6	3
6	Breathable Textile Rectangular Ring Microstrip Patch Antenna at 2.45 GHz for Wearable Applications. Sensors, 2021, 21, 1635.	3.8	20
7	Variable Link Performance Due to Weather Effects in a Long-Range, Low-Power LoRa Sensor Network. Sensors, 2021, 21, 3128.	3.8	12
8	Characterizing the Impact of Doppler Effects on Body-Centric LoRa Links with SDR. Sensors, 2021, 21, 4049.	3.8	5
9	Exposure to radiofrequency electromagnetic fields: Comparison of exposimeters with a novel body-worn distributed meter. Environment International, 2021, 156, 106711.	10.0	9
10	Wearable Bluetooth Low Energy Based Miniaturized Detection Node for Blind Spot Detection and Warning System on Vehicles., 2021,,.		0
11	Experimental Parameter Optimization for Adaptive LoRa Modulation in Body-Centric Applications. , 2020, , .		6
12	A Bluetooth-Low-Energy-Based Detection and Warning System for Vulnerable Road Users in the Blind Spot of Vehicles. Sensors, 2020, 20, 2727.	3.8	7
13	Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. Journal of Sound and Vibration, 2020, 473, 115243.	3.9	51
14	Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dynamics, 2019, 98, 1831-1851.	5.2	27
15	A Multi-Band Body-Worn Distributed Exposure Meter for Personal Radio-Frequency Dosimetry in Diffuse Indoor Environments. IEEE Sensors Journal, 2019, 19, 6927-6937.	4.7	8
16	LoRa Indoor Performance: an Office Environment Case Study. , 2018, , .		11
17	A Multi-Band Body-Worn Distributed Radio-Frequency Exposure Meter: Design, On-Body Calibration and Study of Body Morphology. Sensors, 2018, 18, 272.	3.8	17
18	A Compact Low-Power LoRa IoT Sensor Node with Extended Dynamic Range for Channel Measurements. Sensors, 2018, 18, 2137.	3.8	20

#	Article	lF	Citations
19	LoRa Mobile-To-Base-Station Channel Characterization in the Antarctic. Sensors, 2017, 17, 1903.	3.8	33
20	A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. Sensors, 2016, 16, 180.	3.8	10
21	Capacity of Broadband Body-to-Body Channels Between Firefighters Wearing Textile SIW Antennas. IEEE Transactions on Antennas and Propagation, 2016, 64, 1918-1931.	5.1	17
22	Wearable Flexible Lightweight Modular RFID Tag With Integrated Energy Harvester. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2304-2314.	4.6	54
23	Compact Personal Distributed Wearable Exposimeter. IEEE Sensors Journal, 2015, 15, 4393-4401.	4.7	22
24	Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes. Sensors, 2014, 14, 18583-18610.	3.8	20
25	Flexible dualâ€diversity wearable wireless node integrated on a dualâ€polarised textile patch antenna. IET Science, Measurement and Technology, 2014, 8, 452-458.	1.6	14
26	Active textile antennas in professional garments for sensing, localisation and communication. International Journal of Microwave and Wireless Technologies, 2014, 6, 331-341.	1.9	13
27	Improved Reception of In-Body Signals by Means of a Wearable Multi-Antenna System. International Journal of Antennas and Propagation, 2013, 2013, 1-9.	1.2	6
28	On-Body Wearable Repeater as a Data Link Relay for In-Body Wireless Implants. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1714-1717.	4.0	22
29	Characterization of Measured Indoor Off-Body MIMO Channels with Correlated Fading, Correlated Shadowing and Constant Path Loss. IEEE Transactions on Wireless Communications, 2012, 11, 712-721.	9.2	35
30	Design of a Wearable, Low-Cost, Through-Wall Doppler Radar System. International Journal of Antennas and Propagation, 2012, 2012, 1-9.	1.2	11
31	Indoor Off-Body Wireless MIMO Communication With Dual Polarized Textile Antennas. IEEE Transactions on Antennas and Propagation, 2011, 59, 631-642.	5.1	39
32	Wireless Communication for Firefighters Using Dual-Polarized Textile Antennas Integrated in Their Garment. IEEE Transactions on Antennas and Propagation, 2010, 58, 1357-1368.	5.1	83