
Jeff A Biernaskie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 2004, 6, 1082-1093.	4.6	692
2	Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury. Journal of Neuroscience, 2004, 24, 1245-1254.	1.7	574
3	Enriched Rehabilitative Training Promotes Improved Forelimb Motor Function and Enhanced Dendritic Growth after Focal Ischemic Injury. Journal of Neuroscience, 2001, 21, 5272-5280.	1.7	534
4	Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 2021, 184, 3852-3872.	13.5	340
5	SKPs Derive from Hair Follicle Precursors and Exhibit Properties of Adult Dermal Stem Cells. Cell Stem Cell, 2009, 5, 610-623.	5.2	335
6	Skin-Derived Precursors Generate Myelinating Schwann Cells for the Injured and Dysmyelinated Nervous System. Journal of Neuroscience, 2006, 26, 6651-6660.	1.7	298
7	Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 9545-9559.	1.7	279
8	Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type. Developmental Cell, 2014, 31, 543-558.	3.1	189
9	Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. European Journal of Neuroscience, 2005, 21, 989-999.	1.2	171
10	Macrophages Regulate Schwann Cell Maturation after Nerve Injury. Cell Reports, 2018, 24, 2561-2572.e6.	2.9	142
11	Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function. Cell, 2018, 173, 1045-1057.e9.	13.5	139
12	Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nature Medicine, 2022, 28, 201-211.	15.2	132
13	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130
14	Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation. Biomaterials, 2016, 87, 104-117.	5.7	121
15	Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing. Cell Stem Cell, 2020, 27, 396-412.e6.	5.2	120
16	A serial MR study of cerebral blood flow changes and lesion development following endothelin-1-induced ischemia in rats. Magnetic Resonance in Medicine, 2001, 46, 827-830.	1.9	118
17	Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. Journal of Neuroscience, 2017, 37, 8635-8654.	1.7	104
18	Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Science Advances, 2018, 4. eaas9846.	4.7	73

JEFF A BIERNASKIE

#	Article	IF	CITATIONS
19	Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat. Journal of Neuroscience, 2015, 35, 6714-6730.	1.7	70
20	Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Scientific Reports, 2017, 7, 10291.	1.6	66
21	Immune modulation of hair follicle regeneration. Npj Regenerative Medicine, 2020, 5, 9.	2.5	57
22	Dysfunction of Hair Follicle Mesenchymal Progenitors Contributes to Age-Associated Hair Loss. Developmental Cell, 2020, 53, 185-198.e7.	3.1	56
23	Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Frontiers in Molecular Neuroscience, 2020, 13, 608442.	1.4	54
24	Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve. ENeuro, 2017, 4, ENEURO.0307-16.2017.	0.9	49
25	Macrophages Promote Wound-Induced Hair Follicle Regeneration in a CX3CR1- and TGF-β1–Dependent Manner. Journal of Investigative Dermatology, 2018, 138, 2111-2122.	0.3	48
26	Singleâ€cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts. Experimental Dermatology, 2021, 30, 92-101.	1.4	42
27	Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS ONE, 2016, 11, e0153256.	1.1	41
28	Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Scientific Reports, 2016, 6, 22867.	1.6	39
29	Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal. Npj Regenerative Medicine, 2017, 2, 11.	2.5	38
30	The immunomodulatory properties of adult skinâ€derived precursor <scp>S</scp> chwann cells: implications for peripheral nerve injury therapy. European Journal of Neuroscience, 2016, 43, 365-375.	1.2	37
31	Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain, 2021, 162, 1416-1425.	2.0	35
32	Transcriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. IScience, 2020, 23, 101019.	1.9	31
33	Hair follicle dermal stem cells and skinâ€derived precursor cells: Exciting tools for endogenous and exogenous therapies. Experimental Dermatology, 2017, 26, 505-509.	1.4	29
34	A subpopulation of embryonic microglia respond to maternal stress and influence nearby neural progenitors. Developmental Cell, 2021, 56, 1326-1345.e6.	3.1	27
35	Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Experimental Neurology, 2016, 278, 127-142.	2.0	26
36	Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron, 2021, 109, 2847-2863.e11.	3.8	26

JEFF A BIERNASKIE

#	Article	IF	CITATIONS
37	Human Hair Follicles: "Bulging―with Neural Crest–Like Stem Cells. Journal of Investigative Dermatology, 2010, 130, 1202-1204.	0.3	21
38	<i>Pten</i> Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfl², and Erk Signaling. Journal of Neuroscience, 2016, 36, 9454-9471.	1.7	21
39	Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports, 2020, 15, 140-155.	2.3	21
40	Collagen structural alterations contribute to stiffening of tissue after splitâ€ŧhickness skin grafting. Wound Repair and Regeneration, 2016, 24, 263-274.	1.5	18
41	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	3.0	18
42	Enhanced Expansion and Sustained Inductive Function of Skin-Derived Precursor Cells in Computer-Controlled Stirred Suspension Bioreactors. Stem Cells Translational Medicine, 2017, 6, 434-443.	1.6	16
43	Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagen–Chitosan Hydrogel. ACS Biomaterials Science and Engineering, 2021, 7, 265-278.	2.6	16
44	Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycleâ€dependent manner. Experimental Dermatology, 2019, 28, 419-424.	1.4	15
45	Marginating transitional B cells modulate neutrophils in the lung during inflammation and pneumonia. Journal of Experimental Medicine, 2021, 218, .	4.2	15
46	Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. IScience, 2022, 25, 103818.	1.9	15
47	Primary cilia on porcine testicular somatic cells and their role in hedgehog signaling and tubular morphogenesis in vitro. Cell and Tissue Research, 2017, 368, 215-223.	1.5	14
48	White Matter Repair: Skin-Derived Precursors as a Source of Myelinating Cells. Canadian Journal of Neurological Sciences, 2010, 37, S34-S41.	0.3	13
49	Largeâ€scale expansion of human skinâ€derived precursor cells (hSKPs) in stirred suspension bioreactors. Biotechnology and Bioengineering, 2016, 113, 2725-2738.	1.7	13
50	Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. Npj Regenerative Medicine, 2021, 6, 72.	2.5	13
51	Development and function of smooth muscle cells is modulated by Hic1 in mouse testis. Development (Cambridge), 2020, 147, .	1.2	12
52	Macrophages and Associated Ligands in the Aged Injured Nerve: A Defective Dynamic That Contributes to Reduced Axonal Regrowth. Frontiers in Aging Neuroscience, 2020, 12, 174.	1.7	12
53	Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells. Cells, 2021, 10, 2265.	1.8	12
54	A tale of two cousins: Ependymal cells, quiescent neural stem cells and potential mechanisms driving their functional divergence. FEBS Journal, 2019, 286, 3110-3116.	2.2	11

JEFF A BIERNASKIE

#	Article	IF	CITATIONS
55	Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats. Biomedical Materials (Bristol), 2018, 13, 034101.	1.7	10
56	Isolation and Differentiation of Hair Follicle-Derived Dermal Precursors. Methods in Molecular Biology, 2013, 989, 247-263.	0.4	9
57	17-DMAG regulates p21 expression to induce chondrogenesis <i>in vitro</i> and <i>in vivo</i> . DMM Disease Models and Mechanisms, 2018, 11, .	1.2	9
58	Serum-free bioprocessing of adult human and rodent skin-derived Schwann cells: implications for cell therapy in nervous system injury. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3385-3397.	1.3	8
59	Adult Human Dermal Progenitor Cell Transplantation Modulates the Functional Outcome of Split-Thickness Skin Xenografts. Stem Cell Reports, 2019, 13, 1068-1082.	2.3	8
60	Epidemiological analysis of pediatric burns in the Dominican Republic reveals a demographic profile at significant risk for electrical burns. Burns, 2019, 45, 471-478.	1.1	8
61	Proteoglycan 4 (PRG4) treatment enhances wound closure and tissue regeneration. Npj Regenerative Medicine, 2022, 7, .	2.5	8
62	A novel approach to 32-channel peripheral nervous system myelin imaging in vivo, with single axon resolution. Journal of Neurosurgery, 2018, 130, 163-171.	0.9	7
63	Firefighter willingness to participate in a stem cell clinical trial for burns: A mixed methods study. Burns, 2016, 42, 1740-1750.	1.1	6
64	Flowable Polyethylene Glycol Hydrogels Support the in Vitro Survival and Proliferation of Dermal Progenitor Cells in a Mechanically Dependent Manner. ACS Biomaterials Science and Engineering, 2019, 5, 950-958.	2.6	6
65	Comparison of human skin―and nerveâ€derived Schwann cells reveals many similarities and subtle genomic and functional differences. Clia, 0, , .	2.5	6
66	Burn clinical trials: A systematic review of registration and publications. Burns, 2018, 44, 263-271.	1.1	5
67	Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord. Neuroscience Letters, 2017, 658, 67-72.	1.0	4
68	Droplet Barcoding-Based Single Cell Transcriptomics of Adult Mammalian Tissues. Journal of Visualized Experiments, 2019, , .	0.2	4
69	Bioreactor Expansion of Skin-Derived Precursor Schwann Cells. Methods in Molecular Biology, 2016, 1502, 103-110.	0.4	3
70	Factors Within the Endoneurial Microenvironment Act to Suppress Tumorigenesis of MPNST. Frontiers in Cellular Neuroscience, 2018, 12, 356.	1.8	3
71	Control of dissolved oxygen significantly increases the yield of skinâ€derived Schwann cells during expansion in stirred suspension bioreactors. Engineering Reports, 2021, 3, e12421.	0.9	3
72	PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Science Alliance, 2021, 4, e202000790.	1.3	3

#ARTICLEIFCITATIONS73Burns from illegal cannabis oil manufacturing: a case series. CMAJ Open, 2018, 6, E39-E43.1.1274SOX2 in the Skin., 2016, 281-300.1175Intravital Microscopy Techniques to Image Wound Healing in Mouse Skin. Methods in Molecular0.4176Rely to Comment on a@Adult skin-derived precursor Schwann cell grafts form growths in the injured1.7077Spectral Characterization of Stem Cell-Derived Myelination within the Injured Adult PNS Using the1.80

JEFF A BIERNASKIE