Ming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2696688/publications.pdf Version: 2024-02-01

MING ZHANG

#	Article	IF	CITATIONS
1	Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220, 328-336.	6.6	240
2	The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AICHE Journal, 2016, 62, 2087-2100.	1.8	192
3	Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Processing Technology, 2011, 92, 1842-1848.	3.7	178
4	Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17, 1647-1656.	4.6	167
5	Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Applied Catalysis B: Environmental, 2020, 271, 118936.	10.8	135
6	Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chemical Engineering Journal, 2015, 266, 213-221.	6.6	130
7	Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. Journal of Materials Chemistry A, 2015, 3, 12738-12747.	5.2	126
8	Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system. Green Chemistry, 2011, 13, 1210.	4.6	115
9	Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal, 2016, 301, 123-131.	6.6	115
10	Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288, 608-617.	6.6	113
11	Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. Journal of Colloid and Interface Science, 2019, 534, 239-247.	5.0	106
12	One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids. Chemical Engineering Journal, 2014, 243, 386-393.	6.6	104
13	Boron Nitride Mesoporous Nanowires with Doped Oxygen Atoms for the Remarkable Adsorption Desulfurization Performance from Fuels. ACS Sustainable Chemistry and Engineering, 2016, 4, 4457-4464.	3.2	95
14	A DFT Study of the Extractive Desulfurization Mechanism by [BMIM] ⁺ [AlCl ₄] ^{â^'} Ionic Liquid. Journal of Physical Chemistry B, 2015, 119, 5995-6009.	1.2	88
15	Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega, 2017, 2, 5385-5394.	1.6	86
16	Theoretical evidence of charge transfer interaction between SO ₂ and deep eutectic solvents formed by choline chloride and glycerol. Physical Chemistry Chemical Physics, 2015, 17, 28729-28742.	1.3	80
17	A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance. Green Chemistry, 2016, 18, 3040-3047.	4.6	79
18	Taming Interfacial Oxygen Vacancies of Amphiphilic Tungsten Oxide for Enhanced Catalysis in Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2017, 5, 8930-8938.	3.2	75

Ming Zhang

#	Article	IF	CITATIONS
19	Synthesis of mesoporous WO ₃ /TiO ₂ catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New Journal of Chemistry, 2017, 41, 569-578.	1.4	72
20	Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization. Journal of Molecular Catalysis A, 2015, 406, 23-30.	4.8	66
21	Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel. RSC Advances, 2015, 5, 16847-16855.	1.7	52
22	Magnetic POM-based mesoporous silica for fast oxidation of aromatic sulfur compounds. Fuel, 2017, 209, 545-551.	3.4	52
23	Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A, 2016, 423, 207-215.	4.8	51
24	Supported ionic liquid [Bmim]FeCl ₄ /Am TiO ₂ as an efficient catalyst for the catalytic oxidative desulfurization of fuels. RSC Advances, 2015, 5, 43528-43536.	1.7	45
25	Molybdenum-containing dendritic mesoporous silica spheres for fast oxidative desulfurization in fuel. Inorganic Chemistry Frontiers, 2019, 6, 451-458.	3.0	45
26	TiO ₂ microspheres supported polyoxometalate-based ionic liquids induced catalytic oxidative deep-desulfurization. RSC Advances, 2016, 6, 42402-42412.	1.7	43
27	Preparation, characterization, and anti-Helicobacter pylori activity of Bi3+-Hericium erinaceus polysaccharide complex. Carbohydrate Polymers, 2014, 110, 231-237.	5.1	42
28	O ₂ Activation and Oxidative Dehydrogenation of Propane on Hexagonal Boron Nitride: Mechanism Revisited. Journal of Physical Chemistry C, 2019, 123, 2256-2266.	1.5	42
29	One-pot extraction and aerobic oxidative desulfurization with highly dispersed V ₂ O ₅ /SBA-15 catalyst in ionic liquids. RSC Advances, 2017, 7, 39383-39390.	1.7	40
30	lonic liquid-supported 3DOM silica for efficient heterogeneous oxidative desulfurization. Inorganic Chemistry Frontiers, 2018, 5, 2478-2485.	3.0	38
31	Aerobic Oxidative Desulfurization by Nanoporous Tungsten Oxide with Oxygen Defects. ACS Applied Nano Materials, 2021, 4, 1085-1093.	2.4	37
32	Synthesis of WO3/mesoporous ZrO2 catalyst as a high-efficiency catalyst for catalytic oxidation of dibenzothiophene in diesel. Journal of Materials Science, 2018, 53, 15927-15938.	1.7	35
33	Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM]+[FeCl4]â° ionic liquid in desulfurization: A novel charge transfer mechanism. Journal of Molecular Graphics and Modelling, 2015, 59, 40-49.	1.3	34
34	Designing multifunctional SO ₃ H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Advances, 2017, 7, 55318-55325.	1.7	33
35	Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials, 2020, 293, 109788.	2.2	33
36	Tailoring Electronic Properties of Porphyrin Manganese on Boron Nitride for Enhancing Aerobic Oxidative Desulfurization at Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 1015-1022.	3.2	30

Ming Zhang

#	Article	IF	CITATIONS
37	Fabrication and characterization of tungsten-containing mesoporous silica for heterogeneous oxidative desulfurization. Chinese Journal of Catalysis, 2016, 37, 971-978.	6.9	29
38	Boron and Nitride Dual vacancies on Metalâ€Free Oxygen Doping Boron Nitride as Initiating Sites for Deep Aerobic Oxidative Desulfurization. ChemCatChem, 2020, 12, 1734-1742.	1.8	28
39	An accurate empirical method to predict the adsorption strength for ï€-orbital contained molecules on two dimensional materials. Journal of Molecular Graphics and Modelling, 2018, 82, 93-100.	1.3	25
40	Structure and catalytic oxidative desulfurization properties of SBA-15 supported silicotungstic acid ionic liquid. Journal of Porous Materials, 2016, 23, 823-831.	1.3	23
41	H2O2 decomposition mechanism and its oxidative desulfurization activity on hexagonal boron nitride monolayer: A density functional theory study. Journal of Molecular Graphics and Modelling, 2018, 84, 166-173.	1.3	22
42	One-pot synthesis of ordered mesoporous silica encapsulated polyoxometalate-based ionic liquids induced efficient desulfurization of organosulfur in fuel. RSC Advances, 2015, 5, 76048-76056.	1.7	19
43	Deep eutectic solvent-induced high-entropy structures in boron nitride for boosted initiation of aerobic oxidative desulfurization of diesel. Applied Surface Science, 2020, 529, 146980.	3.1	16
44	Controllable synthesis of functionalized ordered mesoporous silica by metal-based ionic liquids, and their effective adsorption of dibenzothiophene. RSC Advances, 2014, 4, 40588-40594.	1.7	15
45	Binary molten salts mediated defect engineering on hexagonal boron nitride catalyst with long-term stability for aerobic oxidative desulfurization. Applied Surface Science, 2021, 558, 149724.	3.1	13
46	Supported phosphotungstic-based ionic liquid as an heterogeneous catalyst used in the extractive coupled catalytic oxidative desulfurization in diesel. Research on Chemical Intermediates, 2019, 45, 4315-4334.	1.3	11
47	Polyoxometalate-based silica-supported ionic liquids for heterogeneous oxidative desulfurization in fuels. Petroleum Science, 2018, 15, 882-889.	2.4	10
48	Synthesis of amphiphilic peroxophosphomolybdates for oxidative desulfurization of fuels in ionic liquids. Petroleum Science, 2018, 15, 890-897.	2.4	10
49	Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5, 99927-99934.	1.7	9
50	The synthesis of Fe-containing ionic liquid and its catalytic performance for the dehydration of fructose. Chemical Papers, 2017, 71, 1541-1549.	1.0	7
51	One-pot synthesis and characterization of tungsten-containing meso-ceria with enhanced heterogenous oxidative desulfurization in fuels. RSC Advances, 2016, 6, 68922-68928.	1.7	6
52	Efficient aerobic oxidative desulfurization via three-dimensional ordered macroporous tungsten-titanium oxides. Petroleum Science, 2022, 19, 345-353.	2.4	6
53	Fabrication of dual-mesoporous silica by triblock copolymers and metal-based ionic liquid: efficient and durable catalyst for oxidative desulfurization in fuel. RSC Advances, 2015, 5, 104322-104329.	1.7	5
54	Fabrication of functional dual-mesoporous silicas by using peroxo-tungstate ionic liquid and their applications in oxidative desulfurization. Journal of Porous Materials, 2015, 22, 1227-1233.	1.3	5

MING ZHANG

#	Article	IF	CITATIONS
55	Phosphomolybdic ionic liquid supported hydroxyapatite for heterogeneous oxidative desulfurization of fuels. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
56	Fast heterogeneous oxidative desulfurization of dibenzothiophene from ionic liquids supported urchin-liked meso-silica. Materials Express, 2020, 10, 199-205.	0.2	2
57	Facile Construction of Magnetic Ionic Liquid Supported Silica for Aerobic Oxidative Desulfurization in Fuel. Catalysts, 2021, 11, 1496.	1.6	0