
## Anna Żywicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2696615/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Revealing the Influence of the Shape, Size, and Aspect Ratio of ZnO Nanoparticles on Antibacterial and<br>Mechanical Performance of Cellulose Fibers Based Paper. Particle and Particle Systems<br>Characterization, 2022, 39, .                        | 1.2 | 4         |
| 2  | The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu.<br>Scientific Reports, 2022, 12, .                                                                                                                 | 1.6 | 9         |
| 3  | Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of<br>Komagataeibacter xylinus. Biochemical Engineering Journal, 2021, 166, 107855.                                                                       | 1.8 | 15        |
| 4  | Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings.<br>Carbohydrate Polymers, 2021, 253, 117247.                                                                                                                   | 5.1 | 64        |
| 5  | Boosting of Antibacterial Performance of Cellulose Based Paper Sheet via TiO2 Nanoparticles.<br>International Journal of Molecular Sciences, 2021, 22, 1451.                                                                                            | 1.8 | 10        |
| 6  | Investigation on Green Synthesis, Biocompatibility, and Antibacterial Activity of Silver Nanoparticles<br>Prepared Using Cistus incanus. Materials, 2021, 14, 5028.                                                                                     | 1.3 | 8         |
| 7  | Antibacterial Activity of N,O-Acylated Chitosan Derivative. Polymers, 2021, 13, 107.                                                                                                                                                                    | 2.0 | 16        |
| 8  | Potato Juice, a Starch Industry Waste, as a Cost-Effective Medium for the Biosynthesis of Bacterial<br>Cellulose. International Journal of Molecular Sciences, 2021, 22, 10807.                                                                         | 1.8 | 15        |
| 9  | Preparation of Komagataeibacter xylinus Inoculum for Bacterial Cellulose Biosynthesis Using<br>Magnetically Assisted External-Loop Airlift Bioreactor. Polymers, 2021, 13, 3950.                                                                        | 2.0 | 11        |
| 10 | Application of bacterial cellulose experimental dressings saturated with gentamycin for management<br>of bone biofilm <i>in vitro</i> and <i>ex vivo</i> . Journal of Biomedical Materials Research - Part B<br>Applied Biomaterials, 2020, 108, 30-37. | 1.6 | 27        |
| 11 | The Novel Quantitative Assay for Measuring the Antibiofilm Activity of Volatile Compounds<br>(AntiBioVol). Applied Sciences (Switzerland), 2020, 10, 7343.                                                                                              | 1.3 | 6         |
| 12 | Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. Journal of Biotechnology, 2020, 321, 13-22.                                                                                  | 1.9 | 13        |
| 13 | An efficient method of Yarrowia lipolytica immobilization using oil- and emulsion-modified bacterial cellulose carriers. Electronic Journal of Biotechnology, 2019, 41, 30-36.                                                                          | 1.2 | 6         |
| 14 | Potential of Biocellulose Carrier Impregnated with Essential Oils to Fight Against Biofilms Formed on<br>Hydroxyapatite. Scientific Reports, 2019, 9, 1256.                                                                                             | 1.6 | 24        |
| 15 | Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World Journal of Microbiology and Biotechnology, 2019, 35, 11.                                                                                     | 1.7 | 28        |
| 16 | Bacterial cellulose as a support for yeast immobilization – Correlation between carrier properties and process efficiency. Journal of Biotechnology, 2019, 291, 1-6.                                                                                    | 1.9 | 15        |
| 17 | Modification of Bacterial Cellulose with Quaternary Ammonium Compounds Based on Fatty Acids and Amino Acids and the Effect on Antimicrobial Activity. Biomacromolecules, 2018, 19, 1528-1538.                                                           | 2.6 | 52        |
| 18 | Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil.<br>Carbohydrate Polymers, 2018, 199, 294-303.                                                                                                            | 5.1 | 39        |

Anna Żywicka

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Biochemical and cellular properties of <i>Gluconacetobacter xylinus</i> cultures exposed to different modes of rotating magnetic field. Polish Journal of Chemical Technology, 2017, 19, 107-114.                          | 0.3 | 8         |
| 20 | Influence of milk, milk fractions and milk proteins on the growth and viability of mastitis-causing Staphylococcus aureus strain. Italian Journal of Animal Science, 2017, 16, 321-328.                                    | 0.8 | 4         |
| 21 | A.D.A.M. test (Antibiofilm Dressing's Activity Measurement) — Simple method for evaluating anti-biofilm activity of drug-saturated dressings against wound pathogens. Journal of Microbiological Methods, 2017, 143, 6-12. | 0.7 | 26        |
| 22 | Increased water content in bacterial cellulose synthesized under rotating magnetic fields.<br>Electromagnetic Biology and Medicine, 2017, 36, 192-201.                                                                     | 0.7 | 21        |
| 23 | Correlation between type of alkali rinsing, cytotoxicity of bio-nanocellulose and presence of metabolites within cellulose membranes. Carbohydrate Polymers, 2017, 157, 371-379.                                           | 5.1 | 16        |
| 24 | Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose. International Journal of<br>Polymer Science, 2016, 2016, 1-13.                                                                                 | 1.2 | 9         |
| 25 | Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose. Polish Journal of Chemical Technology, 2016, 18, 117-123.                                                    | 0.3 | 9         |
| 26 | Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter<br>xylinus as Carriers for Yeast Immobilization. Applied Biochemistry and Biotechnology, 2016, 180,<br>805-816.             | 1.4 | 23        |
| 27 | Increased yield and selected properties of bacterial cellulose exposed to different modes of a rotating magnetic field. Engineering in Life Sciences, 2016, 16, 483-493.                                                   | 2.0 | 12        |
| 28 | Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT - Food Science and Technology, 2016, 68, 322-328.                 | 2.5 | 60        |
| 29 | The Effect of Rotating Magnetic Field on Enterotoxin Genes Expression in Staphylococcus Aureus<br>Strains. Journal of Magnetics, 2016, 21, 141-147.                                                                        | 0.2 | 2         |
| 30 | Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydrate<br>Polymers, 2015, 133, 52-60.                                                                                           | 5.1 | 39        |