Yuanjian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State of Charge Estimation for Lithium-Ion Battery Based on Hybrid Compensation Modeling and Adaptive H-Infinity Filter. IEEE Transactions on Transportation Electrification, 2023, 9, 945-957.	7.8	3
2	Design, Control, and Validation of Two-Speed Clutchless Automatic Transmission for Electric Vehicle. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1299-1310.	5.8	6
3	Machine Learning-Based Vehicle Model Construction and Validation—Toward Optimal Control Strategy Development for Plug-In Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 1590-1603.	7.8	8
4	A Novel Learning-Based Model Predictive Control Strategy for Plug-In Hybrid Electric Vehicle. IEEE Transactions on Transportation Electrification, 2022, 8, 23-35.	7.8	17
5	A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 2022, 243, 122727.	8.8	50
6	Integrated Velocity Prediction Method and Application in Vehicle-Environment Cooperative Control Based on Internet of Vehicles. IEEE Transactions on Vehicular Technology, 2022, 71, 2639-2654.	6.3	6
7	An Optimal Control Strategy for Plug-In Hybrid Electric Vehicles Based on Enhanced Model Predictive Control With Efficient Numerical Method. IEEE Transactions on Transportation Electrification, 2022, 8, 2516-2530.	7.8	4
8	A novel data-driven controller for plug-in hybrid electric vehicles with improved adaptabilities to driving environment. Journal of Cleaner Production, 2022, 334, 130250.	9.3	9
9	State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network. Journal of Power Sources, 2022, 521, 230892.	7.8	85
10	Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope. Energy, 2022, 244, 123236.	8.8	19
11	A comprehensive study of speed prediction in transportation system: From vehicle to traffic. IScience, 2022, 25, 103909.	4.1	22
12	Global optimization energy management for multi-energy source vehicles based on "Information layer - Physical layer - Energy layer - Dynamic programming―(IPE-DP). Applied Energy, 2022, 312, 118668.	10.1	21
13	Protocol for state-of-health prediction of lithium-ion batteries based on machine learning. STAR Protocols, 2022, 3, 101272.	1.2	4
14	Topology optimization and the evolution trends of two-speed transmission of EVs. Renewable and Sustainable Energy Reviews, 2022, 161, 112390.	16.4	10
15	Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy. Energy, 2022, 251, 123825.	8.8	8
16	Reinforcement-Learning-Based Decision and Control for Autonomous Vehicle at Two-Way Single-Lane Unsignalized Intersection. Electronics (Switzerland), 2022, 11, 1203.	3.1	7
17	<scp>State</scp> of charge estimation framework for lithiumâ€ion batteries based on square root cubature Kalman filter under wide operation temperature range. International Journal of Energy Research, 2021, 45, 5586-5601.	4.5	26
18	Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution. Journal of Power Sources, 2021, 482, 228964.	7.8	59

YUANJIAN ZHANG

#	Article	IF	CITATIONS
19	Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model. IEEE Transactions on Transportation Electrification, 2021, 7, 1271-1284.	7.8	54
20	A Cyber-Physical System-Based Velocity-Profile Prediction Method and Case Study of Application in Plug-In Hybrid Electric Vehicle. IEEE Transactions on Cybernetics, 2021, 51, 40-51.	9.5	24
21	Operation Efficiency Optimization for Permanent Magnet Synchronous Motor Based on Improved Particle Swarm Optimization. IEEE Access, 2021, 9, 777-788.	4.2	15
22	A novel optimal power management strategy for plug-in hybrid electric vehicle with improved adaptability to traffic conditions. Journal of Power Sources, 2021, 489, 229512.	7.8	21
23	State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning. Journal of Energy Storage, 2021, 37, 102494.	8.1	49
24	Machine learning and whale optimization algorithm based design of energy management strategy for plugâ€in hybrid electric vehicle. IET Intelligent Transport Systems, 2021, 15, 1076-1091.	3.0	18
25	Data-driven based eco-driving control for plug-in hybrid electric vehicles. Journal of Power Sources, 2021, 498, 229916.	7.8	36
26	Cooperative optimization of velocity planning and energy management for connected plug-in hybrid electric vehicles. Applied Mathematical Modelling, 2021, 95, 715-733.	4.2	28
27	Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving. Energy, 2021, 228, 120568.	8.8	11
28	Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy, 2021, 228, 120630.	8.8	54
29	An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles. Energy, 2021, 228, 120631.	8.8	17
30	Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles. Mechanical Systems and Signal Processing, 2021, 158, 107765.	8.0	33
31	A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs With Long Short-Term Memory Network and Transfer Learning. IEEE Transactions on Transportation Electrification, 2021, 7, 2238-2248.	7.8	76
32	Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted. Energy, 2021, 236, 121423.	8.8	10
33	State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives. IScience, 2021, 24, 103265.	4.1	78
34	Energy Management Strategy Based on a Novel Speed Prediction Method. Sensors, 2021, 21, 8273.	3.8	6
35	Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation. Journal of Cleaner Production, 2020, 251, 119627.	9.3	22
36	A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework. Journal of Power Sources, 2020, 477, 228650.	7.8	8

YUANJIAN ZHANG

#	Article	IF	CITATIONS
37	A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks. Energy, 2020, 208, 118366.	8.8	50
38	Capacity Prediction and Validation of Lithium-Ion Batteries Based on Long Short-Term Memory Recurrent Neural Network. IEEE Access, 2020, 8, 172783-172798.	4.2	18
39	Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization. Energy, 2020, 207, 118212.	8.8	57
40	Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles. Journal of Power Sources, 2020, 471, 228478.	7.8	71
41	Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control. Energy, 2020, 197, 117192.	8.8	40
42	Control Strategy for an Open-End Winding Induction Motor Drive System for Dual-Power Electric Vehicles. IEEE Access, 2020, 8, 8844-8860.	4.2	15
43	A driving cycle construction methodology combining Markov chain with variation parameters and Monte Carlo. , 2020, , .		0
44	A Hierarchical Energy Management Strategy Based on Model Predictive Control for Plug-In Hybrid Electric Vehicles. IEEE Access, 2019, 7, 81612-81629.	4.2	23
45	A Vehicle-Environment Cooperative Control Based Velocity Profile Prediction Method and Case Study in Energy Management of Plug-in Hybrid Electric Vehicles. IEEE Access, 2019, 7, 75965-75975.	4.2	8
46	An improved adaptive equivalent consumption minimization strategy for parallel plug-in hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 1649-1663.	1.9	17
47	Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction. Mechatronics, 2017, 46, 177-192.	3.3	58
48	An Economical Route Planning Method for Plug-In Hybrid Electric Vehicle in Real World. Energies, 2017, 10, 1775.	3.1	5