
Lindsey N Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2696241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colorimetric assays for the rapid and high-throughput screening of antimicrobial peptide activity against diverse bacterial pathogens. Methods in Enzymology, 2022, 663, 131-156.	1.0	1
2	The novel protein <scp>ScrA</scp> acts through the <scp>SaeRS</scp> twoâ€component system to regulate virulence gene expression in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2022, 117, 1196-1212.	2.5	7
3	Screening transcriptional connections in Staphylococcus aureus using high-throughput transduction of bioluminescent reporter plasmids. Microbiology (United Kingdom), 2022, 168, .	1.8	2
4	Tongalides, Halogenated Butenolides from an Antarctic <i>Delisea</i> sp. Rhodophyte. Journal of Natural Products, 2022, 85, 1886-1891.	3.0	3
5	An Model for Assessing Growth and Survivability of in Whole Human Blood. Methods in Molecular Biology, 2021, 2341, 127-131.	0.9	1
6	Multiple Classes of Antimicrobial Peptides in <i>Amaranthus tricolor</i> Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization. Journal of Natural Products, 2021, 84, 444-452.	3.0	10
7	Unraveling the Impact of Secreted Proteases on Hypervirulence in <i>Staphylococcus aureus</i> . MBio, 2021, 12, .	4.1	12
8	Staphylococcus aureus Trigger Factor Is Involved in Biofilm Formation and Cooperates with the Chaperone PpiB. Journal of Bacteriology, 2021, 203, .	2.2	4
9	Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Reports, 2021, 35, 108930.	6.4	8
10	Cwl0971, a novel peptidoglycan hydrolase, plays pleiotropic roles in <i>Clostridioides difficile</i> R20291. Environmental Microbiology, 2021, 23, 5222-5238.	3.8	10
11	A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microbial Genomics, 2021, 7, .	2.0	15
12	Too Hot to Handle: Antibacterial Peptides Identified in Ghost Pepper. Journal of Natural Products, 2021, 84, 2200-2208.	3.0	6
13	Phenogenomic Characterization of a Newly Domesticated and Novel Species from the Genus <i>Verrucosispora</i> . Applied and Environmental Microbiology, 2021, 87, e0132721.	3.1	2
14	Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. MSphere, 2021, 6, e0067621.	2.9	22
15	Spiropiperidyl rifabutins: expanded in vitro testing against ESKAPE pathogens and select bacterial biofilms. Journal of Antibiotics, 2020, 73, 868-872.	2.0	3
16	SarA plays a predominant role in controlling the production of extracellular proteases in the diverse clinical isolates of <i>Staphylococcus aureus</i> LAC and UAMS-1. Virulence, 2020, 11, 1738-1762.	4.4	15
17	Interdependent YpsA- and YfhS-Mediated Cell Division and Cell Size Phenotypes in Bacillus subtilis. MSphere, 2020, 5, .	2.9	7
18	Regulatory networks important for survival of Acinetobacter baumannii within the host. Current Opinion in Microbiology, 2020, 55, 74-80.	5.1	12

#	Article	IF	CITATIONS
19	Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic Sponge Dendrilla antarctica. Marine Drugs, 2020, 18, 327.	4.6	15
20	Synthesis and biological evaluation of backbone-aminated analogues of gramicidin S. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127283.	2.2	10
21	Draft Genome Sequence of <i>Verrucosispora</i> sp. Strain CWR15, Isolated from a Gulf of Mexico Sponge. Microbiology Resource Announcements, 2020, 9, .	0.6	2
22	Chromatographic editing enhances natural product discovery. Journal of Pharmaceutical and Biomedical Analysis, 2019, 176, 112831.	2.8	2
23	Mapping the Global Network of Extracellular Protease Regulation in Staphylococcus aureus. MSphere, 2019, 4, .	2.9	33
24	Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. Journal of Medicinal Chemistry, 2019, 62, 8480-8496.	6.4	28
25	MroQ Is a Novel Abi-Domain Protein That Influences Virulence Gene Expression in <i>Staphylococcus aureus</i> via Modulation of Agr Activity. Infection and Immunity, 2019, 87, .	2.2	20
26	Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
27	Identification of a unique transcriptional architecture for the sigS operon in Staphylococcus aureus. FEMS Microbiology Letters, 2018, 365, .	1.8	2
28	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	4.6	21
29	Antibacterial Spectrum of a Tetrazole-Based Reversible Inhibitor of Serine Î ² -Lactamases. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	11
30	Identification of a Novel Polyamine Scaffold With Potent Efflux Pump Inhibition Activity Toward Multi-Drug Resistant Bacterial Pathogens. Frontiers in Microbiology, 2018, 9, 1301.	3.5	31
31	<scp><i>S</i></scp> <i>taphylococcus aureus</i> nitric oxide synthase (sa <scp>NOS</scp>) modulates aerobic respiratory metabolism and cell physiology. Molecular Microbiology, 2017, 105, 139-157.	2.5	29
32	Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus. Infection and Immunity, 2017, 85, .	2.2	23
33	A family of genusâ€specific <scp>RNA</scp> s in tandem with <scp>DNA</scp> â€binding proteins control expression of the <i>badA</i> major virulence factor gene in <i>Bartonella henselae</i> . MicrobiologyOpen, 2017, 6, e00420.	3.0	14
34	Complete Eradication of Biofilm From Orthopedic Materials. Journal of Arthroplasty, 2017, 32, 2513-2518.	3.1	20
35	Characterizing the Antimicrobial Activity of <i>N</i> ² , <i>N</i> ⁴ -Disubstituted Quinazoline-2,4-Diamines toward Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
36	The "PepSAVI-MS―Pipeline for Natural Product Bioactive Peptide Discovery. Analytical Chemistry, 2017, 89, 1194-1201.	6.5	34

#	Article	IF	CITATIONS
37	The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus. Journal of Bacteriology, 2017, 199, .	2.2	30
38	An Intracellular Peptidyl-Prolyl <i>cis</i> / <i>trans</i> Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. Journal of Bacteriology, 2017, 199, .	2.2	31
39	Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microbial Genomics, 2017, 3, mgen000107.	2.0	24
40	Characterizing the transcriptional adaptation ofStaphylococcus aureusto stationary phase growth. Pathogens and Disease, 2016, 74, ftw046.	2.0	8
41	Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. Journal of Bacteriology, 2016, 198, 2043-2055.	2.2	38
42	Darwinolide, a New Diterpene Scaffold That Inhibits Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm from the Antarctic Sponge <i>Dendrilla membranosa</i> . Organic Letters, 2016, 18, 2596-2599.	4.6	47
43	Staphylococcus aureus Coordinates Leukocidin Expression and Pathogenesis by Sensing Metabolic Fluxes via RpiRc. MBio, 2016, 7, .	4.1	51
44	<i>Staphylococcus aureus</i> SufT: an essential ironâ€sulphur cluster assembly factor in cells experiencing a highâ€demand for lipoic acid. Molecular Microbiology, 2016, 102, 1099-1119.	2.5	27
45	Identification of 5,6-dihydroimidazo[2,1- b]thiazoles as a new class of antimicrobial agents. Bioorganic and Medicinal Chemistry, 2016, 24, 5633-5638.	3.0	14
46	Exposing the Unique Connection between Metabolism and Virulence in Staphylococcus aureus. Cell Chemical Biology, 2016, 23, 1317-1319.	5.2	1
47	Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. Journal of Bacteriology, 2016, 198, 394-409.	2.2	13
48	Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. MBio, 2016, 7, e01990-15.	4.1	52
49	Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. European Journal of Medicinal Chemistry, 2016, 108, 354-363.	5.5	48
50	Confirming Sterility of an Autoclaved Infected Femoral Component for Use in an Articulated Antibiotic Knee Spacer: A Pilot Study. Journal of Arthroplasty, 2016, 31, 245-249.	3.1	15
51	Towards the complete small RNome of Acinetobacter baumannii. Microbial Genomics, 2016, 2, e000045.	2.0	23
52	Transcriptomic analysis of staphylococcal sRNAs: insights into species-specific adaption and the evolution of pathogenesis. Microbial Genomics, 2016, 2, e000065.	2.0	13
53	A Facile, Microwave-Assisted Synthesis of an Adenosine-Ribose Probe for Binding-Based Profiling of Nucleoside and Nucleotide-Binding Proteins. Current Microwave Chemistry, 2016, 3, 124-130.	0.8	2
54	The Janus Face of a-Toxin: A Potent Mediator of Cytoprotection in Staphylococci-Infected Macrophages. Journal of Innate Immunity, 2015, 7, 187-198.	3.8	17

#	Article	IF	CITATIONS
55	The membrane protein PrsS mimics $\ddot{l}f$ S in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents. Microbiology (United Kingdom), 2015, 161, 1136-1148.	1.8	9
56	Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria. FEMS Microbiology Reviews, 2015, 39, 541-554.	8.6	36
57	Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens. Journal of Medicinal Chemistry, 2015, 58, 3340-3355.	6.4	74
58	The disruption of prenylation leads to pleiotropic rearrangements in cellular behavior in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 95, 819-832.	2.5	15
59	Investigating the genetic regulation of the ECF sigma factor $\ddot{I}fS$ in Staphylococcus aureus. BMC Microbiology, 2014, 14, 280.	3.3	16
60	<i>`İf </i> ^N â€dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic <i><scp>E</scp>scherichia coli</i> is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the <i>`İf </i> ^S antagonist FliZ. MicrobiologyOpen, 2014, 3, 497-512.	3.0	13
61	The lone S41 family C-terminal processing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology (United Kingdom), 2014, 160, 1737-1748.	1.8	40
62	RNA-Sequencing of Staphylococcus aureus Messenger RNA. Methods in Molecular Biology, 2014, 1373, 131-141.	0.9	30
63	Staphylococcal Proteases Aid in Evasion of the Human Complement System. Journal of Innate Immunity, 2014, 6, 31-46.	3.8	91
64	Antibacterial Activity of a Series of <i>N</i> ² , <i>N</i> ⁴ -Disubstituted Quinazoline-2,4-diamines. Journal of Medicinal Chemistry, 2014, 57, 3075-3093.	6.4	82
65	The δ Subunit of RNA Polymerase Guides Promoter Selectivity and Virulence in Staphylococcus aureus. Infection and Immunity, 2014, 82, 1424-1435.	2.2	33
66	Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus. PLoS ONE, 2014, 9, e108868.	2.5	36
67	Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics, 2013, 14, 126.	2.8	66
68	The <i>Staphylococcus aureus</i> leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biological Chemistry, 2013, 394, 791-803.	2.5	25
69	Draft Genome Sequence of Strain CBD-635, a Methicillin-Resistant Staphylococcus aureus USA100 Isolate. Genome Announcements, 2013, 1, .	0.8	4
70	Staphopains Modulate Staphylococcus aureus Biofilm Integrity. Infection and Immunity, 2013, 81, 3227-3238.	2.2	104
71	Extracellular proteases are key mediators of <scp><i>S</i></scp> <i>taphylococcus aureus</i> virulence via the global modulation of virulenceâ€determinant stability. MicrobiologyOpen, 2013, 2, 18-34.	3.0	154
72	Effect of Ester to Amide or <i>N</i> â€Methylamide Substitution on Bacterial Membrane Depolarization and Antibacterial Activity of Novel Cyclic Lipopeptides. ChemMedChem, 2013, 8, 1394-1402.	3.2	17

#	Article	IF	CITATIONS
73	Aureolysin. , 2013, , 563-569.		4
74	Staphopain A. , 2013, , 2150-2157.		2
75	Mannitol Utilisation is Required for Protection of Staphylococcus aureus from Human Skin Antimicrobial Fatty Acids. PLoS ONE, 2013, 8, e67698.	2.5	15
76	Staphopain B. , 2013, , 2157-2163.		1
77	Effect of iacP Mutation on Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium Strain UK-1. Journal of Bacteriology, 2012, 194, 4332-4341.	2.2	6
78	Staphylococcal proteases aid evasion of human complement system. Immunobiology, 2012, 217, 1204.	1.9	0
79	Lipo-Î ³ -AApeptides as a New Class of Potent and Broad-Spectrum Antimicrobial Agents. Journal of Medicinal Chemistry, 2012, 55, 4003-4009.	6.4	110
80	Identification of an intracellular M17 family leucine aminopeptidase thatÂisÂrequired for virulence in Staphylococcus aureus. Microbes and Infection, 2012, 14, 989-999.	1.9	40
81	Studies on the antimicrobial properties of N-acylated ciprofloxacins. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6513-6520.	2.2	45
82	Epigenetic Tailoring for the Production of Anti-Infective Cytosporones from the Marine Fungus Leucostoma persoonii. Marine Drugs, 2012, 10, 762-774.	4.6	89
83	The impact of CodY on virulence determinant production in communityâ€associated methicillinâ€resistant <i>Staphylococcus aureus</i> . Proteomics, 2012, 12, 263-268.	2.2	51
84	The Extracytoplasmic Function Sigma Factor σ ^S Protects against both Intracellular and Extracytoplasmic Stresses in Staphylococcus aureus. Journal of Bacteriology, 2012, 194, 4342-4354.	2.2	42
85	Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 327-335.	2.9	24
86	Non-hemolytic α-AApeptides as antimicrobial peptidomimetics. Chemical Communications, 2011, 47, 9729.	4.1	71
87	Identification of \hat{I}^3 -AApeptides with potent and broad-spectrum antimicrobial activity. Chemical Communications, 2011, 47, 12197.	4.1	54
88	Papain-Like Proteases of Staphylococcus aureus. Advances in Experimental Medicine and Biology, 2011, 712, 1-14.	1.6	36
89	The impact of fatty acids on the antibacterial properties of N-thiolated β-lactams. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5293-5295.	2.2	7
90	NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 2206-2219.	1.8	85

#	Article	IF	CITATIONS
91	Defining the Strain-Dependent Impact of the Staphylococcal Accessory Regulator (<i>sarA</i>) on the Alpha-Toxin Phenotype of Staphylococcus aureus. Journal of Bacteriology, 2011, 193, 2948-2958.	2.2	78
92	Dentipain, a Streptococcus pyogenes IdeS protease homolog, is a novel virulence factor of Treponema denticola. Biological Chemistry, 2010, 391, 1047-55.	2.5	17
93	Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation. PLoS ONE, 2010, 5, e10790.	2.5	149
94	Phagocytosis of Staphylococcus aureus by Macrophages Exerts Cytoprotective Effects Manifested by the Upregulation of Antiapoptotic Factors. PLoS ONE, 2009, 4, e5210.	2.5	146
95	Extracellular proteolytic activities expressed by Bacillus pumilus isolated from endodontic and periodontal lesions. Journal of Medical Microbiology, 2008, 57, 643-651.	1.8	17
96	Properties of the reversible nonoxidative vanillate / 4-hydroxybenzoate decarboxylase from <i>Bacillus subtilis</i> . Canadian Journal of Microbiology, 2008, 54, 75-81.	1.7	48
97	Identification and Characterization of Ï f S, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses. PLoS ONE, 2008, 3, e3844.	2.5	62
98	A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages. PLoS ONE, 2008, 3, e1409.	2.5	374
99	Factors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants. PLoS ONE, 2008, 3, e3361.	2.5	106
100	Inactivation of traP Has No Effect on the Agr Quorum-Sensing System or Virulence of Staphylococcus aureus. Infection and Immunity, 2007, 75, 4519-4527.	2.2	42
101	Isolation and properties of extracellular proteinases of Penicillium marneffei. Biological Chemistry, 2006, 387, 985-93.	2.5	12
102	Investigations into σ B -Modulated Regulatory Pathways Governing Extracellular Virulence Determinant Production in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 6070-6080.	2.2	44
103	Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Molecular Microbiology, 2005, 57, 605-610.	2.5	25
104	Cytoplasmic Control of Premature Activation of a Secreted Protease Zymogen: Deletion of Staphostatin B (SspC) in Staphylococcus aureus 8325-4 Yields a Profound Pleiotropic Phenotype. Journal of Bacteriology, 2005, 187, 1751-1762.	2.2	39
105	Impact of staphylococcal protease expression on the outcome of infectious arthritis. Microbes and Infection, 2004, 6, 202-206.	1.9	23
106	The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 217-228.	1.8	215
107	σ ^B Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional <i>rsbU</i> Strain Derived from <i>Staphylococcus aureus</i> 8325-4. Journal of Bacteriology, 2002, 184, 5457-5467.	2.2	625