
gabriella Fibbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2696221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Th17 lymphocyteâ€dependent degradation of joint cartilage by synovial fibroblasts in a humanized mouse model of arthritis and reversal by secukinumab. European Journal of Immunology, 2021, 51, 220-230.	2.9	8
2	uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cellular and Molecular Life Sciences, 2021, 78, 3057-3072.	5.4	38
3	Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNPâ€Enriched Endothelial Colony Forming Cells on Melanoma. Advanced Science, 2021, 8, 2001175.	11.2	12
4	Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis. Rheumatology, 2021, 60, 4508-4519.	1.9	16
5	Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells. Toxicology in Vitro, 2021, 72, 105094.	2.4	9
6	CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Frontiers in Oncology, 2021, 11, 663225.	2.8	11
7	uPAR Controls Vasculogenic Mimicry Ability Expressed by Drug-Resistant Melanoma Cells. Oncology Research, 2021, 28, 873-884.	1.5	10
8	Altered clot formation and lysis are associated with increased fibrinolytic activity in ascites in patients with advanced cirrhosis. Internal and Emergency Medicine, 2021, 16, 339-347.	2.0	4
9	A Possible Role for PAI-1 Blockade in Melanoma Immunotherapy. Journal of Investigative Dermatology, 2021, 141, 2566-2568.	0.7	3
10	Parvovirus B19 induces cellular senescence in human dermal fibroblasts: putative role in systemic sclerosis–associated fibrosis. Rheumatology, 2021, , .	1.9	5
11	Parvovirus B19 activates in vitro normal human dermal fibroblasts: a possible implication in skin fibrosis and systemic sclerosis. Rheumatology, 2020, 59, 3526-3532.	1.9	12
12	Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers, 2020, 12, 1771.	3.7	6
13	uPAR Knockout Results in a Deep Glycolytic and OXPHOS Reprogramming in Melanoma and Colon Carcinoma Cell Lines. Cells, 2020, 9, 308.	4.1	15
14	Chronic Resveratrol Treatment Reduces the Pro-angiogenic Effect of Human Fibroblast "Senescent-Associated Secretory Phenotype―on Endothelial Colony-Forming Cells: The Role of IL8. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 625-633.	3.6	14
15	Prep1 regulates angiogenesis through a PGC-1α–mediated mechanism. FASEB Journal, 2019, 33, 13893-13904	. 0.5	11
16	Oleuropein aglycone attenuates the pro-angiogenic phenotype of senescent fibroblasts: A functional study in endothelial cells. Journal of Functional Foods, 2019, 53, 219-226.	3.4	14
17	EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine, 2019, 39, 194-206.	6.1	31
18	Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. Journal of Experimental and Clinical Cancer Research, 2018, 37, 74.	8.6	21

gabriella Fibbi

#	Article	IF	CITATIONS
19	One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications. Journal of Colloid and Interface Science, 2018, 521, 50-61.	9.4	45
20	Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1187-1195.	3.6	29
21	Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH. Cancer Letters, 2017, 408, 43-54.	7.2	36
22	uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. International Journal of Cancer, 2017, 141, 1190-1200.	5.1	40
23	Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Human Gene Therapy, 2016, 27, 784-791.	2.7	18
24	Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A "cellular stove―approach to the photoablation of melanoma. Oncotarget, 2016, 7, 39846-39860.	1.8	20
25	Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts. Journal of Molecular Medicine, 2015, 93, 1145-1157.	3.9	18
26	Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities. Cellular and Molecular Life Sciences, 2015, 72, 1537-1557.	5.4	25
27	Differential u PAR recruitment in caveolarâ€lipid rafts by GM 1 and GM 3 gangliosides regulates endothelial progenitor cells angiogenesis. Journal of Cellular and Molecular Medicine, 2015, 19, 113-123.	3.6	19
28	Inhibition of uPAR-TGFβ crosstalk blocks MSC-dependent EMT in melanoma cells. Journal of Molecular Medicine, 2015, 93, 783-794.	3.9	39
29	Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle, 2015, 14, 3088-3100.	2.6	47
30	Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme. Oncotarget, 2014, 5, 3711-3727.	1.8	37
31	The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget, 2014, 5, 1538-1553.	1.8	42
32	Proteomic Identification of VEGF-dependent Protein Enrichment to Membrane Caveolar-raft Microdomains in Endothelial Progenitor Cells. Molecular and Cellular Proteomics, 2013, 12, 1926-1938.	3.8	9
33	EphA2-mediated mesenchymal–amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. Journal of Molecular Medicine, 2013, 91, 103-115.	3.9	37
34	Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β–dependent mesenchymalâ€toâ€mesenchymal transition. Arthritis and Rheumatism, 2013, 65, 258-269.	6.7	46
35	Desmoglein-2-Integrin Beta-8 Interaction Regulates Actin Assembly in Endothelial Cells: Deregulation in Systemic Sclerosis. PLoS ONE, 2013, 8, e68117.	2.5	27
36	GDF5 Regulates TGFß-Dependent Angiogenesis in Breast Carcinoma MCF-7 Cells: In Vitro and In Vivo Control by Anti-TGFß Peptides. PLoS ONE, 2012, 7, e50342.	2.5	31

GABRIELLA FIBBI

#	Article	IF	CITATIONS
37	The Urokinase Receptor System, A Key Regulator at the Intersection between Inflammation, Immunity, and Coagulation. Current Pharmaceutical Design, 2011, 17, 1924-1943.	1.9	99
38	Endothelial progenitor cell–dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood, 2011, 118, 3743-3755.	1.4	70
39	Reduction of in vitro invasion and in vivo cartilage degradation in a SCID mouse model by loss of function of the fibrinolytic system of rheumatoid arthritis synovial fibroblasts. Arthritis and Rheumatism, 2011, 63, 2584-2594.	6.7	30
40	Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain–loss of function of pentraxin 3 and matrix metalloproteinase 12. Arthritis and Rheumatism, 2010, 62, 2488-2498.	6.7	42
41	Urokinase and its receptor in follicular and inflammatory cysts of the jaws. Oral Diseases, 2010, 16, 753-759.	3.0	4
42	TGFβ1 antagonistic peptides inhibit TGFβ1-dependent angiogenesis. Biochemical Pharmacology, 2009, 77, 813-825.	4.4	48
43	Systemic Sclerosis-Endothelial Cell Antiangiogenic Pentraxin 3 and Matrix Metalloprotease 12 Control Human Breast Cancer Tumor Vascularization and Development in Mice. Neoplasia, 2009, 11, 1106-1115.	5.3	32
44	The plasminogen activation system in inflammation. Frontiers in Bioscience - Landmark, 2008, Volume, 4667.	3.0	83
45	A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Research and Therapy, 2006, 8, R115.	3.5	56
46	Piascledine modulates the production of VEGF and TIMPâ€1 and reduces the invasiveness of rheumatoid arthritis synoviocytes. Scandinavian Journal of Rheumatology, 2006, 35, 346-350.	1.1	12
47	Plasminogen activators and inhibitor type-1 in alveolar osteitis. European Journal of Oral Sciences, 2006, 114, 500-503.	1.5	12
48	Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, β2 integrin–mediated connection with actin cytoskeleton in human microvascular endothelial cells: Failure of association in systemic sclerosis endothelial cells. Arthritis and Rheumatism, 2006, 54, 3926-3938.	6.7	77
49	The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis and Rheumatism, 2005, 52, 3618-3628.	6.7	55
50	Proteases and extracellular environment. Thrombosis and Haemostasis, 2005, 93, 190-191.	3.4	8
51	Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Therapy, 2005, 12, 702-714.	4.5	67
52	bcl-2 Induction of Urokinase Plasminogen Activator Receptor Expression in Human Cancer Cells through Sp1 Activation. Journal of Biological Chemistry, 2004, 279, 6737-6745.	3.4	60
53	Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis and Rheumatism, 2004, 50, 3275-3285.	6.7	118
54	Antisense oligodeoxynucleotides for urokinase-plasminogen activator receptor have anti-invasive and anti-proliferative effectsin vitro and inhibit spontaneous metastases of human melanoma in mice. International Journal of Cancer, 2004, 110, 125-133.	5.1	42

gabriella Fibbi

#	Article	IF	CITATIONS
55	Growth Factor-Dependent Proliferation and Invasion of Muscle Satellite Cells Require the Cell-Associated Fibrinolytic System. Biological Chemistry, 2002, 383, 127-36.	2.5	22
56	Non-Enzymatic Activities of Proteases: From Scepticism to Reality. Biological Chemistry, 2002, 383, 1-4.	2.5	5
57	Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clinical and Experimental Metastasis, 2002, 19, 193-207.	3.3	94
58	Transforming Growth Factor Beta-1 Stimulates Invasivity of Hepatic Stellate Cells by Engagement of the Cell-associated Fibrinolytic System. Growth Factors, 2001, 19, 87-100.	1.7	23
59	Cell Invasion Is Affected by Differential Expression of the Urokinase Plasminogen Activator/Urokinase Plasminogen Activator Receptor System in Muscle Satellite Cells from Normal and Dystrophic Patients. Laboratory Investigation, 2001, 81, 27-39.	3.7	48
60	Regulation of Urokinase/Urokinase Receptor Interaction by Heparin-like Glycosaminoglycans. Journal of Biological Chemistry, 2001, 276, 4756-4765.	3.4	11
61	Functions of the fibrinolytic system in human ito cells and its control by basic fibroblast and platelet-derived growth factor. Hepatology, 1999, 29, 868-878.	7.3	50
62	Interaction of Urokinase-Type Plasminogen Activator with Its Receptor Rapidly Induces Activation of Glucose Transportersâ€. Biochemistry, 1997, 36, 3076-3083.	2.5	18
63	Production of Second Messengers Following Chemotactic and Mitogenic Urokinase-Receptor Interaction in Human Fibroblasts and Mouse Fibroblasts Transfected with Human Urokinase Receptor. Experimental Cell Research, 1994, 213, 438-448.	2.6	53
64	Selective localization of receptors for urokinase amino-terminal fragment at substratum contact sites of an in vitro-established line of human epidermal cells. Experimental Cell Research, 1992, 203, 427-434.	2.6	20
65	Modulation of surface-associated urokinase: Binding, interiorization, delivery to lysosomes, and degradation in human keratinocytes. Experimental Cell Research, 1991, 193, 346-355.	2.6	14
66	Modulation of Surface-Associated Urokinase in Different Cell Lines: Evidence for Urokinase Interiorization and Degradation. Seminars in Thrombosis and Hemostasis, 1991, 17, 262-267.	2.7	2
67	Role of Specific Membrane Receptors in Urokinase-Dependent Migration of Human Keratinocytes. Journal of Investigative Dermatology, 1990, 94, 310-316.	0.7	63
68	Interaction of urokinase a chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator. Experimental Cell Research, 1990, 187, 33-38.	2.6	19
69	Role of urokinase receptors of human keratinocytes and dermal fibroblasts. Fibrinolysis, 1989, 3, 1-2.	0.5	1
70	Interaction of urokinase a chain with the cellular receptor induces both urokinase autocriny and cell movement. Fibrinolysis, 1989, 3, 1.	0.5	27
71	Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells*1. Experimental Cell Research, 1988, 179, 385-395.	2.6	102
72	Interaction of urokinase with specific receptors abolishes the time of commitment to terminal differentiation of murine erythroleukaemia (Friend) cells. British Journal of Haematology, 1987, 66, 289-294.	2.5	7

GABRIELLA FIBBI

#	Article	IF	CITATIONS
73	Interaction of urokinase with specific receptors abolishes the time of commitment to terminal differentiation of murine erythroleukaemia (Friend) cells. British Journal of Haematology, 1987, 66, 289-294.	2.5	15
74	The Mr 17 500 region of the A chain of urokinase is required for interaction with a specific receptor in A431 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 885, 301-308.	4.1	33
75	Plasminogen activator: Morphological evidence of binding, internalization and delivery to lysosomes in 3T3 mouse fibroblasts. The Histochemical Journal, 1985, 17, 333-341.	0.6	8
76	Cell-Type-Independent Accumulation of Phosphatidic Acid Induced by Trifluoperazine in Stimulated Human Platelets, Leukocytes, and Fibroblasts. , 1984, , 75-79.		0
77	Involvement of chondroitin sulphate in preventing adhesive cellular interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 762, 512-518.	4.1	15
78	Effects of hyaluronate and heparan sulphate on collagen-fibronectin interactions. International Journal of Biological Macromolecules, 1982, 4, 67-72.	7.5	11
79	Glycosaminoglycan changes involved in polymorphonuclear leukocyte activation in vitro. Journal of Cellular Physiology, 1982, 111, 149-154.	4.1	16
80	Adhesion-dependent heparin production by platelets. Nature, 1982, 296, 352-353.	27.8	23
81	STUDIES ON GLYCOSAMINOGLYCAN-DEPENDENT PROTEASE INHIBITORS. , 1982, , 353-359.		2
82	Cell surface glycosaminoglycans in normal and leukemic leukocytes. Cell Differentiation, 1980, 9, 71-81.	0.4	19
83	Electrophoretic Characterization of Surface Heparan Sulphates in Normal and Virus Transformed 3T3 Cells. Caryologia, 1980, 33, 441-448.	0.3	2