Takio Kitazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695900/publications.pdf

Version: 2024-02-01

304743 395702 1,457 83 22 33 h-index citations g-index papers 83 83 83 1145 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gastric motor effects of peptide and non-peptide ghrelin agonists in mice in vivo and in vitro. Gut, 2005, 54, 1078-1084.	12.1	131
2	Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Frontiers in Endocrinology, 2019, 10, 278.	3.5	58
3	Contractile effects of ghrelin-related peptides on the chicken gastrointestinal tract in vitro. Peptides, 2007, 28, 617-624.	2.4	57
4	In vitro pharmacological characterization of the prostanoid receptor population in the non-pregnant porcine myometrium. European Journal of Pharmacology, 2002, 442, 115-123.	3.5	48
5	Stimulating action of KWâ€5139 (Leu ¹³ â€motilin) on gastrointestinal motility in the rabbit. British Journal of Pharmacology, 1994, 111, 288-294.	5.4	44
6	Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 503-513.	3.0	39
7	Molecular cloning of growth hormone secretagogue-receptor and effect of quail ghrelin on gastrointestinal motility in Japanese quail. Regulatory Peptides, 2009, 158, 132-142.	1.9	37
8	M ₃ Muscarinic Receptors Mediate Positive Inotropic Responses in Mouse Atria: A Study with Muscarinic Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 487-493.	2.5	36
9	Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. Journal of Physiology, 2007, 582, 41-61.	2.9	34
10	Characterization of the muscarinic receptor subtype that mediates the contractile response of acetylcholine in the swine myometrium. European Journal of Pharmacology, 1999, 367, 325-334.	3.5	32
11	Binding and functional characterization of alphaâ€⊋ adrenoceptors in isolated swine myometrium. Autonomic and Autacoid Pharmacology, 1995, 15, 93-105.	0.6	31
12	Molecular identification of ghrelin receptor (GHS-R1a) and its functional role in the gastrointestinal tract of the guinea-pig. Peptides, 2011, 32, 1876-1886.	2.4	31
13	Functional characterization of neural and smooth muscle motilin receptors in the chicken proventriculus and ileum. Regulatory Peptides, 1997, 71, 87-95.	1.9	29
14	Muscle layer- and region-dependent distributions of oxytocin receptors in the porcine myometrium. Peptides, 2001, 22, 963-974.	2.4	29
15	5-HT7 receptor and \hat{I}^2 2-adrenoceptor share in the inhibition of porcine uterine contractility in a muscle layer-dependent manner. European Journal of Pharmacology, 2001, 433, 187-197.	3.5	28
16	Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin-sensitive neural pathway: <i>in vivo</i> and <i>in vitro</i> functional studies. Neurogastroenterology and Motility, 2010, 22, 446-e107.	3.0	28
17	Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. International Journal of Molecular Sciences, 2021, 22, 926.	4.1	28
18	Involvement of 5-hydroxytryptamine7 receptors in inhibition of porcine myometrial contractility by 5-hydroxytryptamine. British Journal of Pharmacology, 1998, 123, 173-182.	5.4	27

#	Article	IF	Citations
19	Uterine region-dependent differences in responsiveness to prostaglandins in the non-pregnant porcine myometrium. Prostaglandins and Other Lipid Mediators, 2005, 75, 105-122.	1.9	27
20	Involvement of COX2–thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish. Aquatic Toxicology, 2014, 154, 19-26.	4.0	27
21	The Leu ¹³ â€motilin (KWâ€5139)â€evoked release of acetylcholine from enteric neurones in the rabbit duodenum. British Journal of Pharmacology, 1993, 109, 94-99.	5.4	25
22	Muscle layer and regional differences in autonomic innervation and responsiveness to transmitter agents in swine myometrium. Autonomic and Autacoid Pharmacology, 1994, 14, 213-227.	0.6	24
23	Smooth Muscle Layer-Specific Variations in the Autonomic Innervation of Bovine Myometrium. General Pharmacology, 1999, 32, 91-100.	0.7	23
24	Ghrelin does not affect gastrointestinal contractility in rainbow trout and goldfish in vitro. General and Comparative Endocrinology, 2012, 178, 539-545.	1.8	23
25	Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility. Frontiers in Endocrinology, 2021, 12, 700884.	3.5	21
26	Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: Studies with muscarinic receptor knockout mice. European Journal of Pharmacology, 2007, 554, 212-222.	3.5	20
27	Cytochrome P450 Expression and Chemical Metabolic Activity before Full Liver Development in Zebrafish. Pharmaceuticals, 2020, 13, 456.	3.8	20
28	The mechanisms of $\hat{l}\pm 2$ -adrenoceptor agonist-induced contraction in longitudinal muscle of the porcine uterus. European Journal of Pharmacology, 2000, 390, 185-195.	3.5	19
29	Pharmacological characterization of 5-hydroxytryptamine-induced contraction in the chicken gastrointestinal tract. Autonomic and Autacoid Pharmacology, 2006, 26, 157-168.	0.5	19
30	Excitatory action of [Leu13]motilin on the gastrointestinal smooth muscle isolated from the chicken. Peptides, 1995, 16, 1243-1252.	2.4	18
31	Histamine mediates the muscle layer-specific responses in the isolated swine myometrium. Journal of Veterinary Pharmacology and Therapeutics, 1997, 20, 187-197.	1.3	18
32	5-HT7 receptor-mediated relaxation of the oviduct in nonpregnant proestrus pigs. European Journal of Pharmacology, 2003, 461, 207-218.	3.5	18
33	Age-dependent reduction of ghrelin- and motilin-induced contractile activity in the chicken gastrointestinal tract. Peptides, 2013, 43, 88-95.	2.4	18
34	Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere, 2018, 193, 1207-1215.	8.2	17
35	Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt. General and Comparative Endocrinology, 2016, 232, 51-59.	1.8	16
36	Transcriptional profiling of cytochrome P450 genes in the liver of adult zebrafish, <i>Danio rerio</i> . Journal of Toxicological Sciences, 2019, 44, 347-356.	1.5	16

3

#	Article	IF	CITATIONS
37	Intracerebroventricular Administration of Growth Hormone Releasing Peptide-6 (GHRP-6) Inhibits Food Intake, but not Food Retention of Crop and Stomach in Neonatal Chicks. Journal of Poultry Science, 2006, 43, 35-40.	1.6	16
38	Smooth muscle layer-dependent distribution of 5-hydroxytryptamine7 receptor in the porcine myometrium. British Journal of Pharmacology, 2000, 130, 79-89.	5.4	15
39	Potentiation of motilin-induced contraction by nitric oxide synthase inhibition in the isolated chicken gastrointestinal tract. Neurogastroenterology and Motility, 2002, 14, 3-13.	3.0	15
40	Muscarinic receptor subtypes involved in regulation of colonic motility in mice: Functional studies using muscarinic receptor-deficient mice. European Journal of Pharmacology, 2011, 670, 236-243.	3.5	15
41	Characterization of feline cytochrome P450 2B6. Xenobiotica, 2017, 47, 93-102.	1.1	14
42	Identification of pheasant ghrelin and motilin and their actions on contractility of the isolated gastrointestinal tract. General and Comparative Endocrinology, 2020, 285, 113294.	1.8	14
43	Molecular cloning of motilin and mechanism of motilin-induced gastrointestinal motility in Japanese quail. General and Comparative Endocrinology, 2016, 233, 53-62.	1.8	13
44	Structural determination, distribution, and physiological actions of ghrelin in the guinea pig. Peptides, 2018, 99, 70-81.	2.4	13
45	Limited expression of functional cytochrome p450 2c subtypes in the liver and small intestine of domestic cats. Xenobiotica, 2019, 49, 627-635.	1.1	13
46	Characterization of functional endothelin receptors in the porcine myometrium. Peptides, 2000, 21, 543-551.	2.4	12
47	Pregnancy-associated changes in responsiveness of the porcine myometrium to bioactive substances. European Journal of Pharmacology, 2003, 469, 135-144.	3.5	12
48	Endogenous prostaglandins regulate spontaneous contractile activity of uterine strips isolated from non-pregnant pigs. Prostaglandins and Other Lipid Mediators, 2006, 81, 93-105.	1.9	12
49	Functional expression and comparative characterization of four feline P450 cytochromes using fluorescent substrates. Xenobiotica, 2017, 47, 951-961.	1.1	12
50	Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish. Journal of Toxicological Sciences, 2017, 42, 455-459.	1.5	12
51	Does motilin stimulate the gastrointestinal motility of the pig? In vitro study using smooth muscle strips and dispersed muscle cells. General Pharmacology, 1996, 27, 655-664.	0.7	11
52	Thromboxane A2 (TP) receptor in the non-pregnant porcine myometrium and its role in regulation of spontaneous contractile activity. European Journal of Pharmacology, 2004, 485, 317-327.	3.5	11
53	Evidence for M2 and M3 Muscarinic Receptor Involvement in Cholinergic Excitatory Junction Potentials Through Synergistic Activation of Cation Channels in the Longitudinal Muscle of Mouse Ileum. Journal of Pharmacological Sciences, 2013, 121, 227-236.	2.5	9
54	Protective effect of prostacyclin against pre-cardiac edema caused by 2,3,7,8-tetrachlorodibenzo- p -dioxin and a thromboxane receptor agonist in developing zebrafish. Chemosphere, 2016, 156, 111-117.	8.2	9

#	Article	IF	Citations
55	Does motilin peptide regulate gastrointestinal motility of zebrafish? An in vitro study using isolated intestinal strips. General and Comparative Endocrinology, 2017, 249, 15-23.	1.8	9
56	Correlation of ghrelin concentration and ghrelin, ghrelin-O-acetyltransferase (GOAT) and growth hormone secretagogue receptor 1a mRNAs expression in the proventriculus and brain of the growing chicken. Peptides, 2015, 63, 134-142.	2.4	8
57	The chicken is an interesting animal for study of the functional role of ghrelin in the gastrointestinal tract. Endocrine Journal, 2017, 64, S5-S9.	1.6	7
58	Î'lpha1B-adrenoceptor-mediated positive inotropic and positive chronotropic actions in the mouse atrium. European Journal of Pharmacology, 2018, 839, 82-88.	3.5	7
59	Mechanisms of 5-hydroxytryptamine-induced inhibition in the porcine myometrium. Autonomic and Autacoid Pharmacology, 1999, 19, 65-75.	0.6	6
60	Accumulation properties of inorganic mercury and organic mercury in the red-crowned crane Grus japonensis in east Hokkaido, Japan. Ecotoxicology and Environmental Safety, 2015, 122, 557-564.	6.0	6
61	A verification study of gastrointestinal motility-stimulating action of guinea-pig motilin using isolated gastrointestinal strips from rabbits and guinea-pigs. General and Comparative Endocrinology, 2019, 274, 106-112.	1.8	6
62	Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzo-p-dioxin in pre-cardiac edema formation in larval zebrafish. Chemosphere, 2020, 254, 126808.	8.2	6
63	Intracerebroventricular administration of chicken motilin does not induce hyperphagia in meat-type chicks. Physiology and Behavior, 2004, 82, 199-203.	2.1	5
64	Excitatory and inhibitory 5-hydroxytryptamine (5-HT) receptors expressed in the isolated porcine uterine muscles. European Journal of Pharmacology, 2008, 600, 123-129.	3.5	5
65	Characterization of prostanoid receptors present on adrenergic neurons innervating the porcine uterine longitudinal muscle. Prostaglandins and Other Lipid Mediators, 2008, 86, 26-34.	1.9	5
66	Immunohistochemical and functional studies for <scp>M</scp> ₃ muscarinic receptors and cycloâ€oxygenaseâ€2 expressed in the mouse atrium. Autonomic and Autacoid Pharmacology, 2012, 32, 41-52.	0.5	5
67	Neuropeptide Y (<scp>NPY</scp>) inhibits spontaneous contraction of the mouse atrium by possible activation of the <scp>NPY</scp> 1 receptor. Autonomic and Autacoid Pharmacology, 2017, 37, 23-28.	0.5	5
68	Contamination Status of Seven Elements in Hooded Cranes Wintering in South-West Kyushu, Japan: Comparison with Red-Crowned Cranes in Hokkaido, Japan. Archives of Environmental Contamination and Toxicology, 2018, 75, 557-565.	4.1	5
69	Motilin- and ghrelin-induced contractions in isolated gastrointestinal strips from three species of frogs. General and Comparative Endocrinology, 2021, 300, 113649.	1.8	5
70	Genetic diversity of cytochrome P450 3A with different metabolic activity in domestic cats. Journal of Veterinary Medical Science, 2019, 81, 598-600.	0.9	4
71	Regulation of Heart Contractility by M2 and M3 Muscarinic Receptors: Functional Studies Using Muscarinic Receptor Knockout Mouse. Neuromethods, 2016, , 235-259.	0.3	4
72	Metabarcoding of feces and intestinal contents to determine carnivorous diets in red-crowned cranes in eastern Hokkaido, Japan. Journal of Veterinary Medical Science, 2022, 84, 358-367.	0.9	4

#	Article	IF	CITATIONS
73	Changes of Mercury Contamination in Red-Crowned Cranes, Grus japonensis, in East Hokkaido, Japan. Archives of Environmental Contamination and Toxicology, 2012, 63, 153-160.	4.1	3
74	A ganglionic stimulant, 1,1-dimethyl-4-phenylpiperazinium, caused both cholinergic and adrenergic responses in the isolated mouse atrium. European Journal of Pharmacology, 2013, 704, 7-14.	3.5	2
75	Genetic diversity of cytochrome P450 1A2 with different metabolic activities in domestic cats. Journal of Veterinary Medical Science, 2019, 81, 980-982.	0.9	2
76	Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin-mediated pre-cardiac edema in larval zebrafish. Journal of Veterinary Medical Science, 2021, 83, 1050-1058.	0.9	2
77	Functional assessment of the gluteus medius, cranial part of the biceps femoris, and vastus lateralis in Beagle dogs based on a novel gait phase classification. Journal of Veterinary Medical Science, 2021, 83, 116-124.	0.9	1
78	Pheasant motilin, its distribution and gastrointestinal contractility-stimulating action in the pheasant. General and Comparative Endocrinology, 2021, 314, 113897.	1.8	1
79	Genetic diversity of cytochrome P450 2A with different metabolic activities in domestic cats. Journal of Veterinary Medical Science, 2019, 81, 983-985.	0.9	0
80	PHARMACOLOGICAL CHARACTERIZATION OF PROSTANOID RECEPTORS IN NON-PREGNANT PORCINE MYOMETRIUM. Journal of Smooth Muscle Research Japanese Section, 2001, 5, J69-J80.	0.1	0
81	An in Vitro Study on Spontaneous Contractility and Drug Responsiveness of Porcine Myometrium During Three Ovarian Stages. Nihon Yoton Gakkaishi, 2005, 42, 165-177.	0.1	O
82	Guinea-pig ghrelin: its structure, distribution and function in the gastrointestinal tract. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-6-25.	0.0	0
83	Effects of prostaglandin E ₂ and F _{2α} on expression of growth factors and proliferation of bovine endometrial cells and explants <i>in vitro</i> . Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-6-5.	0.0	O