
Giovanni Chiodini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 1998, 13, 543-552.	1.4	577
2	CO2degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research, 2001, 106, 16213-16221.	3.3	371
3	Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	352
4	Application of stochastic simulation to CO2flux from soil: Mapping and quantification of gas release. Journal of Geophysical Research, 2003, 108, .	3.3	238
5	Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy. Journal of Geophysical Research, 2000, 105, 8423-8434.	3.3	224
6	Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4 system. Geochimica Et Cosmochimica Acta, 1998, 62, 2673-2687.	1.6	210
7	Diffuse emission of CO 2 from the Fossa crater, Vulcano Island (Italy). Bulletin of Volcanology, 1996, 58, 41-50.	1.1	209
8	Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth and Planetary Science Letters, 2008, 274, 372-379.	1.8	171
9	Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 1999, 159, 205-222.	1.4	163
10	Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bulletin of Volcanology, 1995, 57, 99-110.	1.1	162
11	Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. Journal of Geophysical Research, 2005, 110, .	3.3	162
12	Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophysical Research Letters, 2003, 30, .	1.5	161
13	The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochimica Et Cosmochimica Acta, 2007, 71, 3040-3055.	1.6	161
14	Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochimica Et Cosmochimica Acta, 2001, 65, 2129-2147.	1.6	152
15	Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology, 2012, 40, 943-946.	2.0	150
16	Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth and Planetary Science Letters, 2015, 414, 58-67.	1.8	149
17	Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nature Communications, 2016, 7, 13712.	5.8	144
18	Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Applied Geochemistry, 1993, 8, 357-371.	1.4	142

#	Article	IF	CITATIONS
19	Longâ€ŧerm variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. Journal of Geophysical Research, 2010, 115, .	3.3	136
20	Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy. Applied Geochemistry, 2002, 17, 455-474.	1.4	134
21	Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chemical Geology, 2001, 177, 67-83.	1.4	129
22	Correlated increase in CO2fumarolic content and diffuse emission from La Fossa crater (Vulcano,) Tj ETQq0 0 0 Geophysical Research Letters, 2006, 33, .	rgBT /Ove 1.5	rlock 10 Tf 50 124
23	Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth and Planetary Science Letters, 2001, 188, 535-541.	1.8	122
24	Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chemical Geology, 2006, 229, 313-330.	1.4	121
25	Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. Journal of Volcanology and Geothermal Research, 2004, 133, 291-309.	0.8	119
26	Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy). Scientific Reports, 2017, 7, 6757.	1.6	117
27	Continuous monitoring of CO 2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth and Planetary Science Letters, 2003, 212, 167-179.	1.8	112
28	Soil CO ₂ emissions at Furnas volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application. Journal of Geophysical Research, 2010, 115, .	3.3	111
29	Flux measurements of nonvolcanic CO2emission from some vents in central Italy. Journal of Geophysical Research, 2000, 105, 8435-8445.	3.3	109
30	The emissions of CO2 and other volatiles from the world's subaerial volcanoes. Scientific Reports, 2019, 9, 18716.	1.6	109
31	Diffuse CO2 degassing at Vesuvio, Italy. Bulletin of Volcanology, 2004, 66, 642-651.	1.1	103
32	Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. Journal of Volcanology and Geothermal Research, 2003, 125, 57-79.	0.8	100
33	Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation. Geothermics, 2004, 33, 531-547.	1.5	100
34	Deep structures and carbon dioxide degassing in Central Italy. Geothermics, 1995, 24, 81-94.	1.5	99
35	Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth and Planetary Science Letters, 2011, 304, 389-398.	1.8	99
36	CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Applied Geochemistry, 2006, 21, 1551-1569.	1.4	98

#	Article	IF	CITATIONS
37	Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal reservoir and evaluation of its potential energy. Journal of Geophysical Research, 2007, 112, .	3.3	95
38	Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems. Geochimica Et Cosmochimica Acta, 2004, 68, 2321-2334.	1.6	91
39	First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005–2013) at Campi Flegrei. Geochemistry, Geophysics, Geosystems, 2013, 14, 4153-4169.	1.0	91
40	Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard. Journal of Volcanology and Geothermal Research, 1993, 56, 71-94.	0.8	90
41	Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua. Bulletin of Volcanology, 2005, 68, 76-90.	1.1	90
42	Global-scale control of extensional tectonics on CO2 earth degassing. Nature Communications, 2018, 9, 4608.	5.8	90
43	Nonâ€volcanic CO ₂ Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy. Geophysical Research Letters, 2010, 37, .	1.5	86
44	Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example. Geology, 2009, 37, 319-322.	2.0	85
45	Accumulation chamber measurements of methane fluxes: application to volcanic-geothermal areas and landfills. Applied Geochemistry, 2003, 18, 45-54.	1.4	83
46	Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Applied Geochemistry, 2009, 24, 860-875.	1.4	82
47	Correlation between tectonic CO ₂ Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Science Advances, 2020, 6, eabc2938.	4.7	81
48	Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data. Bulletin of Volcanology, 2005, 67, 358-369.	1.1	80
49	Soil diffuse degassing and thermal energy fluxes from the Southern Lakki Plain, Nisyros (Greece). Geophysical Research Letters, 2001, 28, 69-72.	1.5	78
50	Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Applied Geochemistry, 1989, 4, 465-472.	1.4	72
51	Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: A theoretical investigation based on a mineral-solution equilibrium model. Geochimica Et Cosmochimica Acta, 1991, 55, 2709-2727.	1.6	72
52	Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bulletin of Volcanology, 2003, 65, 505-516.	1.1	72
53	Theoretical geothermometers andPCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy. Applied Geochemistry, 1995, 10, 337-346.	1.4	71
54	Distinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn–Î13C systematics: Application to Santorini volcano, Greece. Earth and Planetary Science Letters, 2013, 377-378, 180-190.	1.8	71

#	Article	IF	CITATIONS
55	180 exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implications for the source of water. Geochimica Et Cosmochimica Acta, 2000, 64, 2479-2488.	1.6	70
56	CO ₂ /CH ₄ ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes. Geophysical Research Letters, 2009, 36, .	1.5	70
57	Geochemistry of gases and waters discharged by the mud volcanoes at Paternò, Mt. Etna (Italy). Bulletin of Volcanology, 1996, 58, 51-58.	1.1	69
58	Causes of unrest at silicic calderas in the East African Rift: New constraints from InSAR and soilâ€gas chemistry at Aluto volcano, Ethiopia. Geochemistry, Geophysics, Geosystems, 2016, 17, 3008-3030.	1.0	68
59	Fluxes of deep CO2 in the volcanic areas of central-southern Italy. Journal of Volcanology and Geothermal Research, 2004, 136, 31-52.	0.8	66
60	Fluid geochemistry of Nisyros island, Dodecanese, Greece. Journal of Volcanology and Geothermal Research, 1993, 56, 95-112.	0.8	65
61	Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina). Journal of Volcanology and Geothermal Research, 2013, 257, 44-56.	0.8	65
62	Continental delamination and mantle dynamics drive topography, extension and fluid discharge in the Apennines. Geology, 2013, 41, 715-718.	2.0	62
63	Threeâ€Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for the Multiphase Flow Structure of the Shallow Hydrothermal System. Journal of Geophysical Research: Solid Earth, 2017, 122, 8749-8768.	1.4	62
64	Fluid geochemistry of Montserrat Island, West Indies. Bulletin of Volcanology, 1996, 58, 380-392.	1.1	61
65	Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bulletin of Volcanology, 2010, 72, 103-118.	1.1	60
66	Geochemical and seismological investigations at Vulcano (Aeolian Islands) during 1978–1989. Journal of Geophysical Research, 1992, 97, 11025-11032.	3.3	59
67	Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophysical Research Letters, 2002, 29, 6-1-6-4.	1.5	59
68	Geophysical and hydrogeological experiments from a shallow hydrothermal system at Solfatara Volcano, Campi Flegrei, Italy: Response to caldera unrest. Journal of Geophysical Research, 2007, 112, .	3.3	59
69	Geochemical evidences of magma dynamics at Campi Flegrei (Italy). Geochimica Et Cosmochimica Acta, 2014, 132, 1-15.	1.6	59
70	Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy). Journal of Volcanology and Geothermal Research, 2014, 283, 172-182.	0.8	58
71	Volcanic, Magmatic and Hydrothermal Gases. , 2015, , 779-797.		53
72	Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy). Scientific Reports, 2017, 7, 4472.	1.6	53

#	Article	IF	CITATIONS
73	Carbon Dioxide Emissions from Subaerial Volcanic Regions. , 2019, , 188-236.		53
74	First 13C/12C isotopic characterisation of volcanic plume CO2. Bulletin of Volcanology, 2011, 73, 531-542.	1.1	52
75	New ground-based lidar enables volcanic CO2 flux measurements. Scientific Reports, 2015, 5, 13614.	1.6	51
76	Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. Journal of Geophysical Research: Solid Earth, 2015, 120, 6071-6084.	1.4	50
77	Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983–84. Scientific Reports, 2017, 7, 8099.	1.6	50
78	Carbon dioxide degassing from Tuscany and Northern Latium (Italy). Global and Planetary Change, 2008, 61, 89-102.	1.6	49
79	Geochemistry of the Submarine Gaseous Emissions of Panarea (Aeolian Islands, Southern Italy): Magmatic vs. Hydrothermal Origin and Implications for Volcanic Surveillance. Pure and Applied Geophysics, 2006, 163, 759-780.	0.8	48
80	New geothermometers for carbonate—evaporite geothermal reservoirs. Geothermics, 1986, 15, 77-86.	1.5	46
81	Geochemical and isotopic changes in the fumarolic and submerged gas discharges during the 2011–2012 unrest at Santorini caldera (Greece). Bulletin of Volcanology, 2013, 75, 1.	1.1	46
82	Fault weakening due to CO ₂ degassing in the Northern Apennines: short- and long-term processes. Geological Society Special Publication, 2008, 299, 175-194.	0.8	45
83	Volcanic degassing at Somma–Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater. Applied Geochemistry, 2005, 20, 1060-1076.	1.4	44
84	Evidence of a recent input of magmatic gases into the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	43
85	Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue–Caviahue Volcanic Complex (Argentina). Journal of Volcanology and Geothermal Research, 2015, 304, 294-303.	0.8	43
86	Gas geochemistry of hydrothermal fluids of the S. Miguel and Terceira Islands, Azores. Geochimica Et Cosmochimica Acta, 2015, 168, 43-57.	1.6	43
87	Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. Journal of Volcanology and Geothermal Research, 2019, 384, 151-157.	0.8	43
88	Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). Journal of Geophysical Research, 2007, 112, .	3.3	42
89	Advective heat transport associated with regional Earth degassing in central Apennine (Italy). Earth and Planetary Science Letters, 2013, 373, 65-74.	1.8	41
90	Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica Et Cosmochimica Acta, 2012, 89, 265-278.	1.6	40

#	Article	IF	CITATIONS
91	Defining a 3D physical model for the hydrothermal circulation at Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research, 2013, 264, 172-182.	0.8	39
92	Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). Journal of Volcanology and Geothermal Research, 2021, 414, 107245.	0.8	38
93	Time-dependent CO2 variations in Lake Albano associated with seismic activity. Bulletin of Volcanology, 2012, 74, 861-871.	1.1	37
94	First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. Journal of Volcanology and Geothermal Research, 2014, 289, 26-40.	0.8	37
95	Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. Journal of Volcanology and Geothermal Research, 2008, 178, 305-316.	0.8	36
96	Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy. Bulletin of Volcanology, 2014, 76, 1.	1.1	36
97	Magma Degassing as a Source of Longâ€Term Seismicity at Volcanoes: The Ischia Island (Italy) Case. Geophysical Research Letters, 2019, 46, 14421-14429.	1.5	36
98	Fumarolic tremor and geochemical signals during a volcanic unrest. Geology, 2017, 45, 1131-1134.	2.0	34
99	Seismic signature of active intrusions in mountain chains. Science Advances, 2018, 4, e1701825.	4.7	34
100	The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia. Journal of Volcanology and Geothermal Research, 2014, 274, 71-77.	0.8	33
101	The geochemical signature caused by earthquake propagation in carbonate-hosted faults. Earth and Planetary Science Letters, 2011, 310, 225-232.	1.8	32
102	Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas. Scientific Reports, 2016, 6, 22448.	1.6	32
103	Reservoir Structure and Hydraulic Properties of the Campi Flegrei Geothermal System Inferred by Audiomagnetotelluric, Geochemical, and Seismicity Study. Journal of Geophysical Research: Solid Earth, 2019, 124, 5336-5356.	1.4	32
104	Continuous radon monitoring during seven years of volcanic unrest at Campi Flegrei caldera (Italy). Scientific Reports, 2020, 10, 9551.	1.6	32
105	A shallowâ€layer model for heavy gas dispersion from natural sources: Application and hazard assessment at Caldara di Manziana, Italy. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	31
106	Diffuse soil emission of hydrothermal gases (CO2, CH4, and C6H6) at Solfatara crater (Campi Flegrei,) Tj ETQq0	0 Q rgBT /(Ovgrlock 10 T
107	A New Webâ€Based Catalog of Earth Degassing Sites in Italy. Eos, 2008, 89, 341-342.	0.1	29

108Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Annals of
Geophysics, 2011, 54, .0.529

#	Article	IF	CITATIONS
109	Temperature, pressure and redox conditions governing the composition of the cold CO2 gases discharged in north Latium (Central Italy). Applied Geochemistry, 1994, 9, 287-295.	1.4	28
110	Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: Extension to high temperature processes. Journal of Volcanology and Geothermal Research, 2015, 299, 68-77.	0.8	28
111	Measuring and interpreting CO ₂ fluxes at regional scale: the case of the Apennines, Italy. Journal of the Geological Society, 2019, 176, 408-416.	0.9	28
112	The cuticle micromorphology of in situ Erica arborea L. exposed to long-term volcanic gases. Environmental and Experimental Botany, 2013, 87, 197-206.	2.0	27
113	An increasing trend of diffuse CO ₂ emission from Teide volcano (Tenerife, Canary) Tj ETQq1 1 0.78- 170, 585-592.	4314 rgBT 0.9	Överlock 1 27
114	Hydrothermal fluid venting in the offshore sector of <scp>C</scp> ampi <scp>F</scp> legrei caldera: A geochemical, geophysical, and volcanological study. Geochemistry, Geophysics, Geosystems, 2016, 17, 4153-4178.	1.0	27
115	Anatomy of a fumarolic system inferred from a multiphysics approach. Scientific Reports, 2018, 8, 7580.	1.6	27
116	Diffuse emission of CO2 and convective heat release at Nisyros caldera (Greece). Journal of Volcanology and Geothermal Research, 2019, 376, 44-53.	0.8	27
117	Analysis of 7-years Radon time series at Campi Flegrei area (Naples, Italy) using artificial neural network method. Applied Radiation and Isotopes, 2020, 163, 109239.	0.7	27
118	Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards. Journal of Volcanology and Geothermal Research, 2000, 97, 271-285.	0.8	26
119	Insight Into Campi Flegrei Caldera Unrest Through Seismic Tremor Measurements at Pisciarelli Fumarolic Field. Geochemistry, Geophysics, Geosystems, 2019, 20, 5544-5555.	1.0	26
120	Monitoring volcanic hazard using eddy covariance at Solfatara volcano, Naples, Italy. Earth and Planetary Science Letters, 2003, 210, 561-577.	1.8	25
121	Statistics of seismicity to investigate the Campi Flegrei caldera unrest. Scientific Reports, 2021, 11, 7211.	1.6	25
122	Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy). Journal of Geophysical Research, 2012, 117, .	3.3	24
123	Influence of volcanic gases on the epidermis of Pinus halepensis Mill. in Campi Flegrei, Southern Italy: A possible tool for detecting volcanism in present and past floras. Journal of Volcanology and Geothermal Research, 2012, 233-234, 1-17.	0.8	24
124	The geological CO ₂ degassing history of a long-lived caldera. Geology, 2015, 43, 767-770.	2.0	24
125	New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop. , 2018, 14, 983-1007.		23
126	Deep CO2 emitted at Furnas do Enxofre geothermal area (Terceira Island, Azores archipelago). An approach for determining CO2 sources and total emissions using carbon isotopic data. Journal of Volcanology and Geothermal Research, 2020, 401, 106968.	0.8	23

#	Article	IF	CITATIONS
127	Carbon dioxide in the urban area of Naples: Contribution and effects of the volcanic source. Journal of Volcanology and Geothermal Research, 2013, 260, 52-61.	0.8	22
128	Carbon dioxide emission and heat release estimation for Pantelleria Island (Sicily, Italy). Journal of Volcanology and Geothermal Research, 2014, 275, 22-33.	0.8	20
129	Heat flux from magmatic hydrothermal systems related to availability of fluid recharge. Journal of Volcanology and Geothermal Research, 2015, 302, 225-236.	0.8	20
130	Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica). PLoS ONE, 2014, 9, e102456.	1.1	19
131	Longâ€ŧerm TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy). Journal of Geophysical Research: Solid Earth, 2015, 120, 812-826.	1.4	19
132	The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences. Journal of Volcanology and Geothermal Research, 2016, 328, 198-209.	0.8	19
133	CO2 degassing at La Solfatara volcano (Phlegrean Fields): Processes affecting and of soil CO2. Geochimica Et Cosmochimica Acta, 2010, 74, 3521-3538.	1.6	17
134	Geochemistry of fluid discharges from Peteroa volcano (Argentina-Chile) in 2010–2015: Insights into compositional changes related to the fluid source region(s). Chemical Geology, 2016, 432, 41-53.	1.4	16
135	Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bulletin of Volcanology, 1995, 57, 99-110.	1.1	16
136	Eddy covariance measurements of hydrothermal heat flux at Solfatara volcano, Italy. Earth and Planetary Science Letters, 2006, 244, 72-82.	1.8	15
137	Changes in CO2 diffuse degassing induced by the passing of seismic waves. Journal of Volcanology and Geothermal Research, 2016, 320, 12-18.	0.8	15
138	Regional groundwater flow and interactions with deep fluids in western Apennine: the case of Narniâ€Amelia chain (Central Italy). Geofluids, 2012, 12, 182-196.	0.3	14
139	Tracking Episodes of Seismicity and Gas Transport in Campi Flegrei Caldera Through Seismic, Geophysical, and Geochemical Measurements. Seismological Research Letters, 2021, 92, 965-975.	0.8	14
140	Long time-series of chemical and isotopic compositions of Vesuvius fumaroles: evidence for deep and shallow processes. Annals of Geophysics, 2011, 54, .	0.5	14
141	The seismicity of Campi Flegrei in the contest of an evolving long term unrest. Scientific Reports, 2022, 12, 2900.	1.6	14
142	Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy: Arguments for a causal link. Earth and Planetary Science Letters, 2017, 474, 436-446.	1.8	13
143	CO2 flux geothermometer for geothermal exploration. Geochimica Et Cosmochimica Acta, 2017, 213, 1-16.	1.6	13
144	An Endorheic Lake in a Changing Climate: Geochemical Investigations at Lake Trasimeno (Italy). Water (Switzerland), 2019, 11, 1319.	1.2	13

#	Article	IF	CITATIONS
145	Lago Albano, the "anti-Nyos-type―lake: The past as a key for the future. Journal of African Earth Sciences, 2019, 150, 425-440.	0.9	13
146	New Insights Into the Recent Magma Dynamics Under Campi Flegrei Caldera (Italy) From Petrological and Geochemical Evidence. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	13
147	Cold groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany, Italy. Geothermics, 1988, 17, 645-656.	1.5	11
148	A Perturbative Approach for Modeling Shortâ€Term Fluidâ€Driven Ground Deformation Episodes on Volcanoes: A Case Study in the Campi Flegrei Caldera (Italy). Journal of Geophysical Research: Solid Earth, 2019, 124, 1036-1056.	1.4	11
149	Campi Flegrei, Vesuvius and Ischia Seismicity in the Context of the Neapolitan Volcanic Area. Frontiers in Earth Science, 2021, 9, .	0.8	11
150	Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010017.	1.0	11
151	Ammonia and boric acid in steam and water. Experimental data from geothermal wells in the phlegrean fields, Naples, Italy. Geothermics, 1988, 17, 711-718.	1.5	10
152	Carbonyl sulphide (cos) in geothermal fluids: an example from the Larderello field (Italy). Geothermics, 1991, 20, 319-327.	1.5	10
153	Deep versus shallow sources of CO2 and Rn from a multi-parametric approach: the case of the Nisyros caldera (Aegean Arc, Greece). Scientific Reports, 2020, 10, 13782.	1.6	9
154	The hydrothermal system of Bagni San Filippo (Italy): fluids circulation and CO2 degassing. Italian Journal of Geosciences, 2020, 139, 383-397.	0.4	9
155	Modeling of the thermal state of Mount Vesuvius from 1631 A.D. to present and the role of CO2degassing on the volcanic conduit closure after the 1944 A.D. eruption. Journal of Geophysical Research, 2007, 112, .	3.3	8
156	Thermal Energy Release Measurement with Thermal Camera: The Case of La Solfatara Volcano (Italy). Remote Sensing, 2019, 11, 167.	1.8	8
157	Soil CO2 flux baseline in Planchón – Peteroa Volcanic Complex, Southern Andes, Argentina - Chile. Journal of South American Earth Sciences, 2021, 105, 102930.	0.6	8

158

#	Article	IF	CITATIONS
163	Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source. Annals of Geophysics, 2013, 56, .	0.5	5
164	Carbon dioxide diffuse emission at the Tolhuaca hydrothermal system (Chile) controlled by tectonics and topography. Journal of Volcanology and Geothermal Research, 2021, 417, 107316.	0.8	4
165	Numerical model of gas dispersion emitted from volcanic sources. Annals of Geophysics, 2009, 48, .	0.5	4
166	New insights into Mt. Vesuvius hydrothermal system and its dynamic based on a critical review of seismic tomography and geochemical features. Annals of Geophysics, 2013, 56, .	0.5	4
167	Geochemistry of the Magmatic-Hydrothermal Fluid Reservoir of Copahue Volcano (Argentina): Insights from the Chemical and Isotopic Features of Fumarolic Discharges. Active Volcanoes of the World, 2016, , 119-139.	1.0	3
168	Better Forecasting for the Next Volcanic Eruption. Eos, 2015, 96, .	0.1	3
169	Carbon-14 as a marker of seismic activity. Radiation Effects and Defects in Solids, 2009, 164, 376-381.	0.4	2
170	The Permanent Monitoring System of the Campi Flegrei Caldera, Italy. Active Volcanoes of the World, 2022, , 219-237.	1.0	2
171	Measuring non-linear deformation of the Campi Flegrei caldera (Naples, Italy) using a multi-method insar-geophysical approach. , 2012, , .		1
172	The Hydrothermal System and Geothermal Activity. Active Volcanoes of the World, 2018, , 145-201.	1.0	0