
Brian J Wilsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695553/publications.pdf Version: 2024-02-01

RDIAN I WILSEY

#	Article	lF	CITATIONS
1	Restoration in the face of changing climate: importance of persistence, priority effects, and species diversity. Restoration Ecology, 2021, 29, e13132.	1.4	39
2	Exotic species drive patterns of plant species diversity in 93 restored tallgrass prairies. Ecological Applications, 2021, 31, e2252.	1.8	19
3	Longâ€ŧerm, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology, 2021, 27, 1170-1180.	4.2	111
4	Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology, 2021, 102, e03332.	1.5	74
5	The effect of long-term CO2 enrichment on carbon and nitrogen content of roots and soil of natural pastureland. Folia Oecologica, 2021, 48, 180-190.	0.4	0
6	Soil depth and grassland origin cooperatively shape microbial community coâ€occurrence and function. Ecosphere, 2020, 11, e02973.	1.0	41
7	Ragweed and sagebrush pollen can distinguish between vegetation types at broad spatial scales. Ecosphere, 2020, 11, e03120.	1.0	Ο
8	Temporal stability of grassland metacommunities is regulated more by community functional traits than species diversity. Ecosphere, 2020, 11, e03178.	1.0	11
9	Lower soil carbon stocks in exotic vs. native grasslands are driven by carbonate losses. Ecology, 2020, 101, e03039.	1.5	9
10	Spectrally derived values of community leaf dry matter content link shifts in grassland composition with change in biomass production. Remote Sensing in Ecology and Conservation, 2020, 6, 344-353.	2.2	13
11	Monarch butterfly host plant (milkweed Asclepias spp.) abundance varies by habitat type across 98 prairies. Restoration Ecology, 2019, 27, 1274-1281.	1.4	12
12	Mycorrhizal colonization and its relationship with plant performance differs between exotic and native grassland plant species. Biological Invasions, 2019, 21, 1981-1991.	1.2	12
13	Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands. Remote Sensing, 2019, 11, 458.	1.8	11
14	Priority effects are affected by precipitation variability and are stronger in exotic than native grassland species. Plant Ecology, 2018, 219, 429-439.	0.7	16
15	Variability in community productivity—mediating effects of vegetation attributes. Functional Ecology, 2018, 32, 1410-1419.	1.7	9
16	Phenology differences between native and novel exoticâ€dominated grasslands rival the effects of climate change. Journal of Applied Ecology, 2018, 55, 863-873.	1.9	24
17	Microbial community structure and functions differ between native and novel (exotic-dominated) grassland ecosystems in an 8-year experiment. Plant and Soil, 2018, 432, 359-372.	1.8	22
18	Reversal of nitrogen-induced species diversity declines mediated by change in dominant grass and litter. Oecologia, 2018, 188, 921-929.	0.9	17

#	Article	IF	CITATIONS
19	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	3.4	296
20	The Biology of Grasslands. , 2018, , .		43
21	Species composition but not diversity explains recovery from the 2011 drought in Texas grasslands. Ecosphere, 2017, 8, e01704.	1.0	20
22	Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology and Evolution, 2017, 1, 1639-1642.	3.4	95
23	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	1.8	169
24	Biotic Regulation of CO2 Uptake–Climate Responses: Links to Vegetation Properties. Ecosystems, 2016, 19, 1376-1385.	1.6	6
25	Impacts of grazing by different large herbivores in grassland depend on plant species diversity. Journal of Applied Ecology, 2015, 52, 1053-1062.	1.9	145
26	Plant invasions differentially affected by diversity and dominant species in native―and exoticâ€dominated grasslands. Ecology and Evolution, 2015, 5, 5662-5670.	0.8	8
27	Topâ€down control of rare species abundances by native ungulates in a grassland restoration. Restoration Ecology, 2015, 23, 465-472.	1.4	23
28	Phenology and temporal niche overlap differ between novel, exotic- and native-dominated grasslands for plants, but not for pollinators. Biological Invasions, 2015, 17, 2633-2644.	1.2	3
29	Differences in beta diversity between exotic and native grasslands vary with scale along a latitudinal gradient. Ecology, 2015, 96, 1042-1051.	1.5	26
30	Exotic grassland species have stronger priority effects than natives regardless of whether they are cultivated or wild genotypes. New Phytologist, 2015, 205, 928-937.	3.5	57
31	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
32	Invaded grassland communities have altered stabilityâ€maintenance mechanisms but equal stability compared to native communities. Ecology Letters, 2014, 17, 92-100.	3.0	53
33	Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems. Oecologia, 2014, 175, 687-697.	0.9	35
34	Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community. Journal of Experimental Botany, 2014, 65, 3415-3424.	2.4	30
35	Native-species seed additions do not shift restored prairie plant communities from exotic to native states. Basic and Applied Ecology, 2014, 15, 297-304.	1.2	24
36	ls community persistence related to diversity? A test with prairie species in a long-term experiment. Basic and Applied Ecology, 2013, 14, 199-207.	1.2	18

#	Article	IF	CITATIONS
37	Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology, 2013, 94, 1697-1707.	1.5	146
38	Simple plant traits explain functional group diversity decline in novel grassland communities of Texas. Plant Ecology, 2013, 214, 231-241.	0.7	9
39	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	3.0	251
40	Plant functional traits improve diversityâ€based predictions of temporal stability of grassland productivity. Oikos, 2013, 122, 1275-1282.	1.2	79
41	Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biological Invasions, 2012, 14, 2617-2624.	1.2	100
42	Assembly history alters alpha and beta diversity, exotic–native proportions and functioning of restored prairie plant communities. Journal of Applied Ecology, 2012, 49, 1436-1445.	1.9	89
43	Grazing and an invasive grass confound spatial pattern of exotic and native grassland plant species richness. Basic and Applied Ecology, 2012, 13, 654-662.	1.2	24
44	Initial species pattern affects invasion resistance in experimental grassland plots. Journal of Vegetation Science, 2012, 23, 4-12.	1.1	29
45	Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 265-276.	1.1	83
46	High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477, 199-202.	13.7	1,195
47	Rapid biodiversity declines in both ungrazed and intensely grazed exotic grasslands. Plant Ecology, 2011, 212, 1663-1674.	0.7	22
48	Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands. Oecologia, 2011, 165, 771-781.	0.9	46
49	Diverse perennial crop mixtures sustain higher productivity over time based on ecological complementarity. Renewable Agriculture and Food Systems, 2011, 26, 317-327.	0.8	78
50	Melilotus officinalis (yellow sweetclover) causes large changes in community and ecosystem processes in both the presence and absence of a cover crop. Biological Invasions, 2010, 12, 65-76.	1.2	10
51	Productivity and Subordinate Species Response to Dominant Grass Species and Seed Source during Restoration. Restoration Ecology, 2010, 18, 628-637.	1.4	41
52	Seeding Method Influences Warmâ€ s eason Grass Abundance and Distribution but not Local Diversity in Grassland Restoration. Restoration Ecology, 2010, 18, 344-353.	1.4	12
53	Experimental manipulation of soil depth alters species richness and coâ€occurrence in restored tallgrass prairie. Journal of Ecology, 2010, 98, 117-125.	1.9	46
54	An empirical comparison of beta diversity indices in establishing prairies. Ecology, 2010, 91, 1984-1988.	1.5	19

#	Article	IF	CITATIONS
55	Species interaction mechanisms maintain grassland plant species diversity. Ecology, 2009, 90, 1821-1830.	1.5	43
56	The relationship between productivity and multiple aspects of biodiversity in six grassland communities. Biodiversity and Conservation, 2009, 18, 91-104.	1.2	37
57	Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography. Plant Ecology, 2009, 201, 639-649.	0.7	23
58	Biodiversity maintenance mechanisms differ between native and novel exoticâ€dominated communities. Ecology Letters, 2009, 12, 432-442.	3.0	81
59	Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 2009, 12, 443-451.	3.0	393
60	Modes of Crown Vetch Invasion and Persistence. American Midland Naturalist, 2009, 161, 232-242.	0.2	4
61	Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography. , 2009, , 275-285.		Ο
62	Grassland Plant Composition Alters Vehicular Disturbance Effects in Kansas, USA. Environmental Management, 2008, 41, 676-684.	1.2	14
63	Diversity–productivity relationships in two ecologically realistic rarity–extinction scenarios. Oikos, 2008, 117, 996-1005.	1.2	35
64	The Impact of Seeding Method on Diversity and Plant Distribution in Two Restored Grasslands. Restoration Ecology, 2008, 18, 311-321.	1.4	22
65	Crop Species Diversity Affects Productivity and Weed Suppression in Perennial Polycultures under Two Management Strategies. Crop Science, 2008, 48, 331-342.	0.8	133
66	Evenness-invasibility relationships differ between two extinction scenarios in tallgrass prairie. Oikos, 2007, 116, 87-98.	1.2	38
67	Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos, 2007, 116, 2044-2052.	1.2	141
68	Species abundances influence the net biodiversity effect in mixtures of two plant species. Basic and Applied Ecology, 2007, 8, 209-218.	1.2	14
69	Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecology, 2007, 190, 259-273.	0.7	98
70	Early-successional plants regulate grassland productivity and species composition: a removal experiment. Oikos, 2006, 113, 287-295.	1.2	30
71	Assessing grassland restoration success: relative roles of seed additions and native ungulate activities. Journal of Applied Ecology, 2006, 43, 1098-1109.	1.9	109
72	Aboveground productivity and root–shoot allocation differ between native and introduced grass species. Oecologia, 2006, 150, 300-309.	0.9	114

#	Article	IF	CITATIONS
73	Patterns of Plant Species Diversity in Remnant and Restored Tallgrass Prairies. Restoration Ecology, 2005, 13, 480-487.	1.4	139
74	Predicting Plant Extinction Based on Species-Area Curves in Prairie Fragments with High Beta Richness. Conservation Biology, 2005, 19, 1835-1841.	2.4	46
75	An assessment of grassland restoration success using species diversity components. Journal of Applied Ecology, 2005, 42, 327-336.	1.9	163
76	RELATIONSHIPS AMONG INDICES SUGGEST THAT RICHNESS IS AN INCOMPLETE SURROGATE FOR GRASSLAND BIODIVERSITY. Ecology, 2005, 86, 1178-1184.	1.5	231
77	Importance of species replication in understanding plant invasions into North American grasslands. , 2005, , 61-75.		3
78	REALISTICALLY LOW SPECIES EVENNESS DOES NOT ALTER GRASSLAND SPECIES-RICHNESS–PRODUCTIVITY RELATIONSHIPS. Ecology, 2004, 85, 2693-2700.	1.5	130
79	Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures?. Ecology Letters, 2003, 6, 248-256.	3.0	123
80	EFFECTS OF SEED ADDITIONS AND GRAZING HISTORY ON DIVERSITY AND PRODUCTIVITY OF SUBHUMID GRASSLANDS. Ecology, 2003, 84, 920-931.	1.5	85
81	Tropical pasture carbon cycling: relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters, 2002, 5, 367-376.	3.0	70
82	Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation. Ecology Letters, 2002, 5, 676-684.	3.0	159
83	Title is missing!. Plant Ecology, 2002, 159, 15-22.	0.7	35
84	Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. American Naturalist, 2001, 158, 286-299.	1.0	435
85	Effects of Elevated CO2 on the Response of Phleum pratense and Poa pratensis to Aboveground Defoliation and Rootâ€Feeding Nematodes. International Journal of Plant Sciences, 2001, 162, 1275-1282.	0.6	14
86	Effects of Resource Availability on Carbon Allocation and Developmental Instability in Cloned Birch Seedlings. International Journal of Plant Sciences, 2000, 161, 119-125.	0.6	25
87	BIODIVERSITY AND ECOSYSTEM FUNCTIONING: IMPORTANCE OF SPECIES EVENNESS IN AN OLD FIELD. Ecology, 2000, 81, 887-892.	1.5	322
88	BIODIVERSITY AND ECOSYSTEM FUNCTIONING: IMPORTANCE OF SPECIES EVENNESS IN AN OLD FIELD. , 2000, 81, 887.		3
89	The effect of water level management on the soils and vegetation of two coastal Louisiana marshes. Wetlands Ecology and Management, 1999, 7, 193-218.	0.7	13
90	LEAF FLUCTUATING ASYMMETRY INCREASES WITH HYBRIDIZATION AND ELEVATION IN TREE-LINE BIRCHES. Ecology, 1998, 79, 2092-2099.	1.5	90

#	Article	IF	CITATIONS
91	Temporally Variable Rainfall Does Not Limit Yields of Serengeti Grasses. Oikos, 1998, 81, 463.	1.2	39
92	Effects of Elevated CO 2 and Defoliation on Grasses: A Comparative Ecosystem Approach. , 1997, 7, 844.		23
93	EFFECTS OF ELEVATED CO2AND DEFOLIATION ON GRASSES: A COMPARATIVE ECOSYSTEM APPROACH. , 1997, 7, 844-853.		26
94	Urea additions and defoliation affect plant responses to elevated CO2 in a C3 grass from Yellowstone National Park. Oecologia, 1996, 108, 321-327.	0.9	23
95	Plant Responses to Elevated Atmospheric CO 2 among Terrestrial Biomes. Oikos, 1996, 76, 201.	1.2	21
96	Variation in use of green flushes following burns among African ungulate species: the importance of body size. African Journal of Ecology, 1996, 34, 32-38.	0.4	72
97	Causes for vegetation dieback in a Louisiana salt marsh: A bioassay approach. Aquatic Botany, 1995, 51, 281-289.	0.8	47
98	Grazing of Panicum amarum in a Louisiana barrier island dune plant community: Management implications for dune restoration projects. Ocean and Coastal Management, 1994, 23, 213-224.	2.0	35
99	Will increases in atmospheric CO2 affect regrowth following grazing in C4 grasses from tropical grasslands? A test with Sporobolus kentrophyllus. Oecologia, 1994, 99, 141-144.	0.9	31
100	Effects of increased elevation and macro- and micronutrient additions onSpartina alterniflora transplant success in salt-marsh dieback areas in Louisiana. Environmental Management, 1992, 16, 505-511.	1.2	39
101	Variation in nutria diets in selected freshwater forested wetlands of Louisiana. Wetlands, 1991, 11, 263-278.	0.7	22
102	The relationship between produced water discharges, and plant biomass and species composition, in three Louisiana marshes. Oil and Chemical Pollution, 1990, 7, 317-335.	0.1	6