List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Current Topics in Developmental Biology, 2022, , 59-89.	2.2	6
2	When cells get in the flow. ELife, 2022, 11, .	6.0	0
3	Wnt-Frizzled planar cell polarity signaling in the regulation of cell motility. Current Topics in Developmental Biology, 2022, , 255-297.	2.2	17
4	Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nature Communications, 2021, 12, 6974.	12.8	16
5	Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Scientific Reports, 2020, 10, 21731.	3.3	6
6	Planar cell polarity: moving from single cells to tissue-scale biology. Development (Cambridge), 2020, 147, .	2.5	12
7	Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. ELife, 2020, 9, .	6.0	18
8	Integrins are required for synchronous ommatidial rotation in the <i>Drosophila</i> eye linking planar cell polarity signalling to the extracellular matrix. Open Biology, 2019, 9, 190148.	3.6	8
9	Notch signaling coordinates ommatidial rotation in the Drosophila eye via transcriptional regulation of the EGF-Receptor ligand Argos. Scientific Reports, 2019, 9, 18628.	3.3	8
10	Regulation of Numb during planar cell polarity establishment in the Drosophila eye. Mechanisms of Development, 2019, 160, 103583.	1.7	3
11	From instruction to output: Wnt/PCP signaling in development and cancer. Current Opinion in Cell Biology, 2018, 51, 110-116.	5.4	121
12	LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018, 362, 1171-1177.	12.6	142
13	Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nature Communications, 2018, 9, 5304.	12.8	24
14	PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Developmental Cell, 2018, 45, 481-495.e8.	7.0	99
15	Prickle is phosphorylated by Nemo and targeted for degradation to maintain Prickle/Spiny-legs isoform balance during planar cell polarity establishment. PLoS Genetics, 2018, 14, e1007391.	3.5	7
16	AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster. PLoS Genetics, 2018, 14, e1007153.	3.5	6
17	Wnt/PCP Instructions for Cilia in Left-Right Asymmetry. Developmental Cell, 2017, 40, 423-424.	7.0	9
18	APC/CFzr/Cdh1-Dependent Regulation of Planar Cell Polarity Establishment via Nek2 Kinase Acting on Dishevelled. Developmental Cell, 2017, 40, 53-66.	7.0	17

#	Article	IF	CITATIONS
19	Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling. Nature Communications, 2016, 7, 11135.	12.8	29
20	Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila. Cell Reports, 2016, 16, 344-356.	6.4	39
21	The Dishevelled Protein Family. Current Topics in Developmental Biology, 2016, 117, 75-91.	2.2	64
22	Establishment of the Muscle–Tendon Junction During Thorax Morphogenesis in <i>Drosophila</i> Requires the Rho-Kinase. Genetics, 2016, 204, 1139-1149.	2.9	12
23	Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays, 2016, 38, 1234-1245.	2.5	32
24	A Novel Frizzled-Based Screening Tool Identifies Genetic Modifiers of Planar Cell Polarity in <i>Drosophila</i> Wings. G3: Genes, Genomes, Genetics, 2016, 6, 3963-3973.	1.8	6
25	Wnt-Frizzled/Planar Cell Polarity Signaling: Cellular Orientation by Facing the Wind (Wnt). Annual Review of Cell and Developmental Biology, 2015, 31, 623-646.	9.4	313
26	Planar Polarity: Converting a Morphogen Gradient into Cellular Polarity. Current Biology, 2015, 25, R372-R374.	3.9	7
27	The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nature Communications, 2015, 6, 6751.	12.8	31
28	Components of Intraflagellar Transport Complex A Function Independently of the Cilium to Regulate Canonical Wnt Signaling in Drosophila. Developmental Cell, 2015, 34, 705-718.	7.0	21
29	Luna, a Drosophila KLF6/KLF7, Is Maternally Required for Synchronized Nuclear and Centrosome Cycles in the Preblastoderm Embryo. PLoS ONE, 2014, 9, e96933.	2.5	5
30	WNKs in Wnt/β-catenin signaling. Cell Cycle, 2014, 13, 173-174.	2.6	6
31	Walter J Gehring (1939–2014). EMBO Journal, 2014, 33, 1615-1616.	7.8	1
32	Walter J. Gehring (1939–2014). Developmental Biology, 2014, 395, 1-3.	2.0	1
33	Mechanisms of planar cell polarity establishment in Drosophila. F1000prime Reports, 2014, 6, 98.	5.9	38
34	Wnk kinases are positive regulators of canonical Wnt∫î²â€€atenin signalling. EMBO Reports, 2013, 14, 718-725.	4.5	35
35	Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nature Cell Biology, 2013, 15, 1045-1055.	10.3	148
36	Nemo regulates cell dynamics and represses the expression of miple, a midkine/pleiotrophin cytokine, during ommatidial rotation. Developmental Biology, 2013, 377, 113-125.	2.0	10

#	Article	IF	CITATIONS
37	The Drosophila Selectin Furrowed Mediates Intercellular Planar Cell Polarity Interactions via Frizzled Stabilization. Developmental Cell, 2013, 26, 455-468.	7.0	32
38	β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors. PLoS Genetics, 2013, 9, e1003603.	3.5	60
39	<i>Drosophila</i> CK1-γ, <i>gilgamesh</i> , controls PCP-mediated morphogenesis through regulation of vesicle trafficking. Journal of Cell Biology, 2012, 196, 605-621.	5.2	46
40	Novel Regulators of Planar Cell Polarity: A Genetic Analysis in <i>Drosophila</i> . Genetics, 2012, 191, 145-162.	2.9	11
41	Hibris, a Drosophila Nephrin Homolog, Is Required for Presenilin-Mediated Notch and APP-like Cleavages. Developmental Cell, 2012, 23, 82-96.	7.0	34
42	Planar cell polarity signaling: coordination of cellular orientation across tissues. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 479-499.	5.9	82
43	Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin–β-catenin. Nature Structural and Molecular Biology, 2011, 18, 665-672.	8.2	43
44	Functional dissection of phosphorylation of Disheveled in Drosophila. Developmental Biology, 2011, 360, 132-142.	2.0	40
45	Intertissue Mechanical Stress Affects Frizzled-Mediated Planar Cell Polarity in the Drosophila Notum Epidermis. Current Biology, 2011, 21, 236-242.	3.9	45
46	Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proceedings of the United States of America, 2011, 108, 2819-2824.	7.1	59
47	The Drosophila GIPC Homologue Can Modulate Myosin Based Processes and Planar Cell Polarity but Is Not Essential for Development. PLoS ONE, 2010, 5, e11228.	2.5	13
48	Disabled is a bona fide component of the Abl signaling network. Development (Cambridge), 2010, 137, 3719-3727.	2.5	34
49	Abelson family kinases regulate Frizzled planar cell polarity signaling via Dsh phosphorylation. Genes and Development, 2010, 24, 2157-2168.	5.9	41
50	A New Spin on Planar Cell Polarity. Cell, 2010, 142, 674-676.	28.9	4
51	Phosphatase-defective LEOPARD syndrome mutations in PTPN11 gene have gain-of-function effects during Drosophila development. Human Molecular Genetics, 2009, 18, 193-201.	2.9	82
52	Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8579-8584.	7.1	133
53	Centrosomal localization of Diversin and its relevance to Wnt signaling. Journal of Cell Science, 2009, 122, 3791-3798.	2.0	41
54	A quest for the mechanism regulating global planar cell polarity of tissues. Trends in Cell Biology, 2009, 19, 295-305.	7.9	129

#	Article	IF	CITATIONS
55	Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature Cell Biology, 2009, 11, 286-294.	10.3	160
56	Ubiquitin Connects with Planar Cell Polarity. Cell, 2009, 137, 209-211.	28.9	1
57	The apical/basal-polarity determinant Scribble cooperates with the PCP core factor Stbm/Vang and functions as one of its effectors. Developmental Biology, 2009, 333, 67-77.	2.0	75
58	Frizzled–Dishevelled signaling specificity outcome can be modulated by Diego in Drosophila. Mechanisms of Development, 2008, 125, 30-42.	1.7	28
59	Planar Cell Polarity Signaling: From Fly Development to Human Disease. Annual Review of Genetics, 2008, 42, 517-540.	7.6	488
60	Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Developmental Biology, 2008, 316, 110-123.	2.0	43
61	The Frizzled Extracellular Domain Is a Ligand for Van Gogh/Stbm during Nonautonomous Planar Cell Polarity Signaling. Developmental Cell, 2008, 15, 462-469.	7.0	127
62	Microscopic Analysis of the Adult Drosophila Retina Using Semithin Plastic Sections. Methods in Molecular Biology, 2008, 420, 277-287.	0.9	17
63	Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Reviews Genetics, 2007, 8, 126-138.	16.3	437
64	Analysis of the role of the Rac/Cdc42 GTPases during planar cell polarity generation in Drosophila. International Journal of Developmental Biology, 2007, 51, 379-388.	0.6	22
65	A GAP in Convergent Extension Scores PAR. Developmental Cell, 2006, 11, 2-4.	7.0	8
66	Frizzled/PCP-Dependent Asymmetric Neuralized Expression Determines R3/R4 Fates in the Drosophila Eye. Developmental Cell, 2006, 11, 887-894.	7.0	39
67	Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature, 2006, 439, 220-224.	27.8	349
68	Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO Journal, 2006, 25, 3068-3077.	7.8	158
69	CKIɛ/discs overgrown Promotes Both Wnt-Fz/β-Catenin and Fz/PCP Signaling in Drosophila. Current Biology, 2006, 16, 1337-1343.	3.9	87
70	TGFβ Activated Kinase-1: New Insights into the Diverse Roles of TAK1 in Development and Immunity. Cell Cycle, 2006, 5, 2852-2855.	2.6	84
71	Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Human Molecular Genetics, 2006, 15, 543-553.	2.9	66
72	Cooperative activities of Drosophila DE-Cadherin and DN-Cadherin regulate the cell motility process of ommatidial rotation. Development (Cambridge), 2006, 133, 3283-3293.	2.5	62

#	Article	IF	CITATIONS
73	The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development (Cambridge), 2006, 133, 957-966.	2.5	128
74	Diversin regulates heart formation and gastrulation movements in development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15900-15905.	7.1	69
75	Planar cell polarity signaling: a common mechanism for cellular polarization. Mount Sinai Journal of Medicine, 2006, 73, 738-50.	1.9	44
76	Planar cell polarity in the Drosophila eye: Cell fate and organization. Advances in Developmental Biology (Amsterdam, Netherlands), 2005, 14, 15-38.	0.4	1
77	Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nature Cell Biology, 2005, 7, 691-697.	10.3	179
78	Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genetics, 2005, 37, 537-543.	21.4	680
79	Regulation of Lethal giant larvae by Dishevelled. Nature, 2005, 437, 1376-1380.	27.8	130
80	PLANAR CELL POLARIZATION: An Emerging Model Points in the Right Direction. Annual Review of Cell and Developmental Biology, 2005, 21, 155-176.	9.4	277
81	The Apical Determinants aPKC and dPatj Regulate Frizzled-Dependent Planar Cell Polarity in the Drosophila Eye. Cell, 2005, 121, 621-631.	28.9	158
82	Notch signaling controls proliferation through cell-autonomous and non-autonomous mechanisms in the Drosophila eye. Developmental Biology, 2005, 285, 38-48.	2.0	69
83	A conserved signaling cassette regulates hair patterning from Drosophila to man. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9173-9174.	7.1	10
84	Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes. Development (Cambridge), 2004, 131, 4467-4476.	2.5	133
85	Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye. Development (Cambridge), 2004, 131, 5695-5702.	2.5	43
86	Subcellular Localization of Frizzled Receptors, Mediated by Their Cytoplasmic Tails, Regulates Signaling Pathway Specificity. PLoS Biology, 2004, 2, e158.	5.6	87
87	Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO Journal, 2003, 22, 4409-4420.	7.8	203
88	Coordinating Proliferation and Tissue Specification to Promote Regional Identity in the Drosophila Head. Developmental Cell, 2003, 5, 403-414.	7.0	138
89	Identification of the Drosophila progenitor of mammalian Krüppel-like factors 6 and 7 and a determinant of fly development. Gene, 2003, 314, 55-62.	2.2	33
90	Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled. Molecular Cell, 2003, 12, 1251-1260.	9.7	425

#	Article	IF	CITATIONS
91	Phospholipid Membrane Composition Affects EGF Receptor and Notch Signaling through Effects on Endocytosis during Drosophila Development. Developmental Cell, 2003, 5, 559-570.	7.0	62
92	Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development (Cambridge), 2003, 130, 5413-5423.	2.5	71
93	The Atypical Cadherin Flamingo Links Frizzled and Notch Signaling in Planar Polarity Establishment in the Drosophila Eye. Developmental Cell, 2002, 2, 655-666.	7.0	111
94	Selector and signalling molecules cooperate in organ patterning. Nature Cell Biology, 2002, 4, E48-E51.	10.3	45
95	Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation?. Trends in Genetics, 2002, 18, 564-571.	6.7	324
96	The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO Journal, 2002, 21, 976-985.	7.8	210
97	Tissue Polarity in the Retina. Results and Problems in Cell Differentiation, 2002, 37, 89-106.	0.7	3
98	The role of the Drosophila TAK homologue dTAK during development. Mechanisms of Development, 2001, 102, 67-79.	1.7	55
99	The Ankyrin Repeat Protein Diego Mediates Frizzled-Dependent Planar Polarization. Developmental Cell, 2001, 1, 93-101.	7.0	221
100	<i>Drosophila</i> Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes and Development, 2001, 15, 1540-1553.	5.9	77
101	Spiny legs and prickled bodies: new insights and complexities in planar polarity establishment. BioEssays, 2000, 22, 311-315.	2.5	27
102	Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Current Biology, 2000, 10, 979-S1.	3.9	168
103	Signaling Specificity by Frizzled Receptors in Drosophila. Science, 2000, 288, 1825-1828.	12.6	116
104	Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature, 1999, 397, 523-526.	27.8	204
105	Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mechanisms of Development, 1999, 83, 127-139.	1.7	149
106	Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mechanisms of Development, 1999, 83, 27-37.	1.7	255
107	The Drosophila Jak Kinase Hopscotch Is Required for Multiple Developmental Processes in the Eye. Developmental Biology, 1999, 213, 432-441.	2.0	39
108	Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling. Cell, 1998, 94, 109-118.	28.9	730

#	Article	IF	CITATIONS
109	ThemuscleblindGene Participates in the Organization of Z-Bands and Epidermal Attachments ofDrosophilaMuscles and Is Regulated byDmef2. Developmental Biology, 1998, 195, 131-143.	2.0	139
110	Functional Analysis of the Fibrinogen-Related scabrous Gene From Drosophila melanogaster Identifies Potential Effector and Stimulatory Protein Domains. Genetics, 1998, 150, 663-673.	2.9	20
111	Secreted Fringe-like Signaling Molecules May Be Glycosyltransferases. Cell, 1997, 88, 9-11.	28.9	120
112	The role of RhoA in tissue polarity and Frizzled signalling. Nature, 1997, 387, 292-295.	27.8	520
113	Nomenclature: Vertebrate Mediators of TGFÎ ² Family Signals. Cell, 1996, 87, 173.	28.9	177
114	Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature, 1995, 373, 705-709.	27.8	127
115	JUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell, 1995, 83, 753-760.	28.9	115
116	Drosophila Jun mediates Ras-dependent photoreceptor determination. Cell, 1994, 78, 973-986.	28.9	100
117	The drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell, 1990, 60, 211-224.	28.9	484
118	Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis. Cell, 1987, 48, 465-478.	28.9	276
119	Isolation of <i>caudal</i> , a <i>Drosophila</i> homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. EMBO Journal, 1985, 4, 2961-2969.	7.8	218