Bruce L Kutter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695383/publications.pdf Version: 2024-02-01

RDUCE | KUTTED

#	Article	IF	CITATIONS
1	Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 1999, 125, 750-759.	1.5	546
2	Centrifuge modeling of load-deformation behavior of rocking shallow foundations. Soil Dynamics and Earthquake Engineering, 2005, 25, 773-783.	1.9	179
3	Capacity, Settlement, and Energy Dissipation of Shallow Footings Subjected to Rocking. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 1129-1141.	1.5	173
4	Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 1378-1391.	1.5	164
5	Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Geotechnique, 1992, 42, 427-441.	2.2	149
6	Observed Seismic Lateral Resistance of Liquefying Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2000, 126, 898-906.	1.5	130
7	Liquefaction Mechanism for Layered Soils. Journal of Geotechcnical Engineering, 1994, 120, 737-755.	0.4	110
8	Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models. Geotechnical Testing Journal, 1998, 21, 365.	0.5	106
9	Centrifuge Modeling of Bridge Systems Designed for Rocking Foundations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 335-344.	1.5	103
10	Shake Table Test of Large-Scale Bridge Columns Supported on Rocking Shallow Foundations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .	1.5	92
11	LEAP-GWU-2015 experiment specifications, results, and comparisons. Soil Dynamics and Earthquake Engineering, 2018, 113, 616-628.	1.9	92
12	Centrifuge Modeling of Transport Processes for Pollutants in Soils. Journal of Geotechcnical Engineering, 1988, 114, 185-205.	0.4	88
13	Nonlinear Seismic Soil-Pile Structure Interaction. Earthquake Spectra, 1998, 14, 377-396.	1.6	88
14	Dynamic Response of Saturated Dense Sand in Laminated Centrifuge Container. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 598-609.	1.5	85
15	Characterization of rocking shallow foundations using centrifuge model tests. Earthquake Engineering and Structural Dynamics, 2012, 41, 1043-1060.	2.5	83
16	Seismic soil–foundation–structure interaction observed in geotechnical centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2013, 48, 162-174.	1.9	80
17	Strength Loss and Localization at Silt Interlayers in Slopes of Liquefied Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 1192-1202.	1.5	78
18	Static Pushover Analyses of Pile Groups in Liquefied and Laterally Spreading Ground in Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 1055-1066.	1.5	76

#	Article	IF	CITATIONS
19	Dynamic Experiments and Analyses of a Pile-Group-Supported Structure. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 585-596.	1.5	73
20	Application and Validation of Practical Tools for Nonlinear Soil-Foundation Interaction Analysis. Earthquake Spectra, 2010, 26, 111-129.	1.6	73
21	Centrifuge Modeling of Seismically Induced Uplift for the BART Transbay Tube. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 754-765.	1.5	70
22	Effects of Moment-to-Shear Ratio on Combined Cyclic Load-Displacement Behavior of Shallow Foundations from Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 1044-1055.	1.5	69
23	Shear Localization Due to Liquefaction-Induced Void Redistribution in a Layered Infinite Slope. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 1293-1303.	1.5	61
24	Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase. Soil Dynamics and Earthquake Engineering, 2018, 113, 714-743.	1.9	57
25	Postshaking Shear Strain Localization in a Centrifuge Model of a Saturated Sand Slope. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 164-174.	1.5	56
26	Contact Interface Model for Shallow Foundations Subjected to Combined Cyclic Loading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 407-419.	1.5	52
27	Nonlinear dynamic foundation and frame structure response observed in geotechnical centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2013, 50, 117-133.	1.9	48
28	Seismic Design of Rocking Shallow Foundations: Displacement-Based Methodology. Journal of Bridge Engineering, 2014, 19, .	1.4	46
29	Settlement, Sliding, and Liquefaction Remediation of Layered Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 1999, 125, 968-978.	1.5	45
30	FEM Analysis of Dynamic Soil-Pile-Structure Interaction in Liquefied and Laterally Spreading Ground. Earthquake Spectra, 2013, 29, 733-755.	1.6	45
31	Liquefaction-Induced Softening of Load Transfer between Pile Groups and Laterally Spreading Crusts. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 91-103.	1.5	42
32	Gravityâ€Scaled Tests on Blastâ€Induced Soilâ€Structure Interaction. Journal of Geotechcnical Engineering, 1988, 114, 431-447.	0.4	40
33	Liquefactionâ€Induced Lateral Spreading of Mildly Sloping Ground. Journal of Geotechcnical Engineering, 1994, 120, 2236-2243.	0.4	40
34	Dynamic centrifuge model tests on clay embankments. Geotechnique, 1989, 39, 91-106.	2.2	37
35	Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions. Soil Dynamics and Earthquake Engineering, 2018, 113, 804-818.	1.9	37
36	Demonstration of Compatible Yielding between Soil-Foundation and Superstructure Components. Journal of Structural Engineering, 2013, 139, 1408-1420.	1.7	35

#	Article	IF	CITATIONS
37	Effect of Footing Shape and Embedment on the Settlement, Recentering, and Energy Dissipation of Shallow Footings Subjected to Rocking. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	32
38	Strength Parameters for Bearing Capacity of Sand. Journal of Geotechcnical Engineering, 1988, 114, 491-498.	0.4	31
39	Seismic Design of Pile Foundations for Liquefaction Effects. Geotechnical, Geological and Earthquake Engineering, 2007, , 277-302.	0.1	31
40	Fast Stacking and Phase Corrections of Shear Wave Signals in a Noisy Environment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 1154-1165.	1.5	31
41	Probabilistic Seismic Performance of Rocking-Foundation and Hinging-Column Bridges. Earthquake Spectra, 2012, 28, 1423-1446.	1.6	31
42	Nonlinear Soil–Foundation–Structure and Structure–Soil–Structure Interaction: Centrifuge Test Observations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	1.5	29
43	Design Considerations for Rocking Foundations on Unattached Piles. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	1.5	29
44	Centrifuge Tests of Adjacent Mat-Supported Buildings Affected by Liquefaction. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .	1.5	29
45	Grain Size Analysis and Maximum and Minimum Dry Density Testing of Ottawa F-65 Sand for LEAP-UCD-2017. , 2020, , 31-44.		29
46	Nonlinear Soil–Foundation–Structure and Structure–Soil–Structure Interaction: Engineering Demands. Journal of Structural Engineering, 2015, 141, .	1.7	28
47	New Tool for Shear Wave Velocity Measurements in Model Tests. Geotechnical Testing Journal, 2000, 23, 444-453.	0.5	27
48	Soil-Pile-Superstructure Interaction in Liquefiable Sand. Transportation Research Record, 1997, 1569, 55-64.	1.0	26
49	Effects of Layer Thickness and Density on Settlement and Lateral Spreading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 603-614.	1.5	25
50	Rationale for Shallow Foundation Rocking Provisions in ASCE 41-13. Earthquake Spectra, 2016, 32, 1097-1119.	1.6	24
51	Database of rocking shallow foundation performance: Dynamic shaking. Earthquake Spectra, 2020, 36, 960-982.	1.6	24
52	Seismic Deformation of Bar Mat Mechanically Stabilized Earth Walls. I: Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 14-25.	1.5	23
53	Effects of capillary number, Bond number, and gas solubility on water saturation of sand specimens. Canadian Geotechnical Journal, 2013, 50, 133-144.	1.4	23
54	Static and seismic stability of sensitive clay slopes. Soil Dynamics and Earthquake Engineering, 2015, 79, 118-129.	1.9	22

#	Article	IF	CITATIONS
55	Centrifuge Testing of the Seismic Performance of a Submerged Cut-and-Cover Tunnel in Liquefiable Soil. , 2008, , .		19
56	Centrifuge modeling and numerical analysis on seismic site response of deep offshore clay deposits. Engineering Geology, 2017, 227, 54-68.	2.9	19
57	LEAP-UCD-2017 Comparison of Centrifuge Test Results. , 2020, , 69-103.		18
58	LEAP-UCD-2017 V. 1.01 Model Specifications. , 2020, , 3-29.		18
59	Validation of ASCE 41-13 Modeling Parameters and Acceptance Criteria for Rocking Shallow Foundations. Earthquake Spectra, 2016, 32, 1121-1140.	1.6	17
60	Stability of Leaning Towers. Journal of Geotechcnical Engineering, 1991, 117, 297-318.	0.4	16
61	Contraction, Dilation, and Failure of Sand in Triaxial, Torsional, and Rotational Shear Tests. Journal of Engineering Mechanics - ASCE, 2009, 135, 1155-1165.	1.6	15
62	Seismic Behavior of Frame-Wall-Rocking Foundation Systems. I: Test Program and Slow Cyclic Results. Journal of Structural Engineering, 2015, 141, 04015059.	1.7	14
63	Database of rocking shallow foundation performance: Slow-cyclic and monotonic loading. Earthquake Spectra, 2020, 36, 1585-1606.	1.6	14
64	Twenty-Four Centrifuge Tests to Quantify Sensitivity of Lateral Spreading to Dr and PGA. , 2018, , .		13
65	Earthquake Deformation of Centrifuge Model Banks. Journal of Geotechcnical Engineering, 1984, 110, 1697-1714.	0.4	12
66	Seismic Deformation of Bar Mat Mechanically Stabilized Earth Walls. II: A Multiblock Model. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 26-35.	1.5	12
67	Experimental Observations of Inertial and Lateral Spreading Loads on Pile Groups during Earthquakes. , 2005, , 1.		12
68	Modeling Input Motion Boundary Conditions for Simulations of Geotechnical Shaking Table Tests. Earthquake Spectra, 2010, 26, 349-369.	1.6	12
69	Centrifuge Testing of Rocking Foundations on Saturated Sand and Unconnected Piles: The Fluid Response. , 2012, , .		12
70	Seismic System Identification Using Centrifuge-based Soil-Structure Interaction Test Data. Journal of Earthquake Engineering, 2013, 17, 469-496.	1.4	11
71	New Database for Foundation and Ground Performance in Liquefaction Experiments. Earthquake Spectra, 2015, 31, 2485-2509.	1.6	11
72	LEAP-GWU-2015 centrifuge test at UC Davis. Soil Dynamics and Earthquake Engineering, 2018, 113, 663-670.	1.9	11

#	ARTICLE	IF	CITATIONS
73	Seismic Behavior of Frame-Wall-Rocking Foundation Systems. II: Dynamic Test Phase. Journal of Structural Engineering, 2015, 141, .	1.7	10
74	Comparison of LEAP-UCD-2017 CPT Results. , 2020, , 117-129.		10
75	Centrifuge Model Tests of Liquefaction-Induced Downdrag on Piles in Uniform Liquefiable Deposits. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	10
76	Seismically Induced Flow Slide on Centrifuge. Journal of Geotechcnical Engineering, 1988, 114, 1442-1449.	0.4	8
77	Effect of Critical Contact Area Ratio on Moment Capacity of Rocking Shallow Footings. , 2008, , .		8
78	Discussion of "Single Piles in Lateral Spreads: Field Bending Moment Evaluation―by Ricardo Dobry, Tarek Abdoun, Thomas D. O'Rourke, and S.H. Goh. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 529-531.	1.5	7
79	Effects of Thixotropy and Cement Content on the Sensitivity of Soft Remolded Clay. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .	1.5	7
80	LEAP-ASIA-2019: Validation of centrifuge experiments and the generalized scaling law on liquefaction-induced lateral spreading. Soil Dynamics and Earthquake Engineering, 2022, 157, 107237.	1.9	7
81	Numerical Investigation of Mechanisms Affecting Performance of Cyclically Loaded Tension Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, 04019086.	1.5	6
82	Deformation of centrifuge models of clay embankments due to †bumpy road' earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 1983, 2, 199-205.	0.3	5
83	Physical modelling of dynamic behavior of soil-foundation-superstructure systems. International Journal of Physical Modelling in Geotechnics, 2006, 6, 01-12.	0.5	5
84	Constantp′ and Constant Volume Friction Angles Are Different. Geotechnical Testing Journal, 1997, 20, GTJ19970006.	0.5	5
85	Centrifuge Modeling of Cyclic Degradation of Axially Loaded Piles in Sand for Offshore Wind Turbine Structures. International Journal of Offshore and Polar Engineering, 2019, 29, 172-181.	0.3	5
86	Numerical Simulation of a Soil Model-Model Container-Centrifuge Shaking Table System. , 2008, , .		4
87	LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results. , 2020, , 187-218.		4
88	Centrifuge Testing of Remediation of Liquefaction at Bridge Sites. Transportation Research Record, 1998, 1633, 26-37.	1.0	3
89	Discussion of "Analyzing Liquefaction-Induced Lateral Spreads Using Strength Ratios―by S. M. Olson and C. I. Johnson. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 2008-2010.	1.5	3

90 Metrics for the Comparison of Acceleration Time Histories. , 2017, , .

0

#	Article	IF	CITATIONS
91	Effects of the ratio between body forces and inter-particle forces on maximum void ratio. Soils and Foundations, 2020, 60, 1-12.	1.3	3
92	Nonlinear Shear Wave Propagation in Strain Stiffening and Strain Softening Soil. , 2008, , .		2
93	Effect of earthquakeâ€induced axial load fluctuations on asymmetric frame–wall–rocking foundation systems. Earthquake Engineering and Structural Dynamics, 2015, 44, 1997-2013.	2.5	2
94	Comparison of Liquefaction Constitutive Models for a Hypothetical Sand. , 2017, , .		2
95	NHERI Centrifuge Facility: Large-Scale Centrifuge Modeling in Geotechnical Research. Frontiers in Built Environment, 2020, 6, .	1.2	2
96	Measuring Vertical Displacement Using Laser Lines and Cameras. International Journal of Physical Modelling in Geotechnics, 0, , 1-1.	0.5	2
97	LEAP-UCD-2017 Centrifuge Test at University of California, Davis. , 2020, , 255-276.		2
98	Experimental Performance of a Seawall Model Under Seismic Conditions. Soils and Foundations, 2000, 40, 77-91.	1.3	1
99	<title>Visualization of experimental earthquake data</title> ., 2003, , .		1
100	The UC Davis High-Speed Wireless Data Acquisition System. , 2007, , .		1
101	Discrepancy Metrics and Sensitivity Analysis of Dynamic Soil Response. , 2018, , .		1
102	Closure to " <i>Earthquake Deformation of Centrifuge Model Banks</i> ―by Bruce L. Kutter (December, 1984, Vol. 110, No. 12). Journal of Geotechcnical Engineering, 1987, 113, 72-73.	0.4	0
103	Discussion of " Liquefaction Evaluation Procedure ―by Steve J. Poulos, Gonzalo Castro, and John W. France (June, 1985, Vol. 111, No. 6). Journal of Geotechcnical Engineering, 1988, 114, 243-246.	0.4	0
104	Closure to " Strength Parameters for Bearing Capacity of Sand ―by Bruce L. Kutter, Abbas Abghari, and James A. Cheney (April, 1988, Vol. 114, No. 4). Journal of Geotechcnical Engineering, 1989, 115, 1818-1819.	0.4	0
105	Development of Innovative Foundation Systems to Optimize Seismic Behavior of Bridge Structures. , 2008, , .		0
106	Influence of Physical Modeling on Adoption of Rocking Foundations in Practice. , 2012, , .		0
107	Effects of Ground Motion Characteristics on Seismic Response of Rocking-Foundation Bridges. , 2012, ,		0
			_

108 Performance of a Soil Liquefaction Model. , 2017, , .

#	Article	IF	CITATIONS
109	Editorial: Development of LEAP and the planning phase of the US project. Soil Dynamics and Earthquake Engineering, 2018, 113, 615.	1.9	0
110	A New Technique for Monitoring Movement of Buried Objects Using an Electrode Switching System. Geotechnical Testing Journal, 2008, 31, 381-392.	0.5	0
111	Difference and Sensitivity Analyses of the LEAP-2017 Experiments. , 2020, , 131-156.		0