Claudio Migliaresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695328/publications.pdf Version: 2024-02-01

109 papers	5,683 citations	81434 41 h-index	93651 72 g-index
112	112	112	7959
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585.	3.8	6
2	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	3.8	15
3	Enthesis Healing Is Dependent on Scaffold Interphase Morphology—Results from a Rodent Patellar Model. Cells, 2022, 11, 1752.	1.8	5
4	A Bio-inspired Multifunctionalized Silk Fibroin. ACS Biomaterials Science and Engineering, 2021, 7, 507-516.	2.6	18
5	A novel and selective silk fibroin fragmentation method. Soft Matter, 2021, 17, 6863-6872.	1.2	4
6	Injectable Scaffold-Systems for the Regeneration of Spinal Cord: Advances of the Past Decade. ACS Biomaterials Science and Engineering, 2021, 7, 983-999.	2.6	8
7	Multinucleated Giant Cells Induced by a Silk Fibroin Construct Express Proinflammatory Agents: An Immunohistological Study. Materials, 2021, 14, 4038.	1.3	2
8	Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 936-947.	1.3	13
9	Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation. Materials Science and Engineering C, 2020, 107, 110197.	3.8	21
10	Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin. Advances in Experimental Medicine and Biology, 2020, 1249, 39-49.	0.8	11
11	Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. Materials Science and Engineering C, 2019, 103, 109787.	3.8	26
12	Synthesis of Gold Nanoparticles Decorated with Multiwalled Carbon Nanotubes (Au-MWCNTs) via Cysteaminium Chloride Functionalization. Scientific Reports, 2019, 9, 5667.	1.6	76
13	Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability. Macromolecular Research, 2019, 27, 558-564.	1.0	14
14	Breath Figures decorated silicon oxinitride ceramic surfaces with controlled Si ions release for enhanced osteoinduction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1284-1294.	1.6	3
15	Silk fibroin porous scaffolds by N ₂ O foaming. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 491-506.	1.9	39
16	Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomaterialia, 2018, 72, 150-166.	4.1	81
17	Sodium oleate induced rapid gelation of silk fibroin. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1219-1231.	1.9	5
18	Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 89-97.	1.3	29

#	Article	IF	CITATIONS
19	Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass [®] coâ€sintered bioceramics. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1131-e1142.	1.3	30
20	Breath figures decorated silica-based ceramic surfaces with tunable geometry from UV cross-linkable polysiloxane precursor. Journal of the European Ceramic Society, 2018, 38, 1320-1326.	2.8	14
21	Homeostasis maintenance of encapsulated cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 830-839.	1.3	3
22	Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants. Tissue Engineering - Part C: Methods, 2018, 24, 20-31.	1.1	24
23	Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1532-1541.	1.3	101
24	Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 859-872.	1.6	78
25	From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic) Tj ETQq1 1 2017, 15, 31-42.	0.784314 0.7	rgBT /Overloo 8
26	Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 876-887.	1.3	49
27	TiO ₂ -SiO ₂ -Reinforced Methylated Grafted Natural Rubber (MG49-TiO ₂ -SiO ₂) Polymer Nanocomposites: Preparation, Optimization and Characterization. Polymers and Polymer Composites, 2016, 24, 747-754.	1.0	4
28	Processing Techniques and Applications of Silk Hydrogels in Bioengineering. Journal of Functional Biomaterials, 2016, 7, 26.	1.8	92
29	Heterogeneity of biomaterialâ€induced multinucleated giant cells: Possible importance for the regeneration process?. Journal of Biomedical Materials Research - Part A, 2016, 104, 413-418.	2.1	53
30	Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs. Chemistry and Physics of Lipids, 2016, 196, 81-88.	1.5	10
31	Hydrogels in Cartilage Tissue Engineering. , 2016, , 215-270.		0
32	Oleic acid surfactant in polycaprolactone/hydroxyapatiteâ€composites for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1076-1082.	1.6	13
33	Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. International Journal of Biological Macromolecules, 2016, 87, 504-513.	3.6	26
34	Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta Biomaterialia, 2016, 31, 156-166.	4.1	107
35	The effects of <i>Bombyx mori</i> silk strain and extraction time on the molecular and biological characteristics of sericin. Bioscience, Biotechnology and Biochemistry, 2016, 80, 241-249.	0.6	14
36	Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Materials Science and Engineering C, 2016, 59, 471-479.	3.8	42

#	Article	IF	CITATIONS
37	Design and optimization of self-nanoemulsifying formulations for lipophilic drugs. Nanotechnology, 2015, 26, 125102.	1.3	19

Biomaterials: Magnetic Levitational Assembly for Living Material Fabrication (Adv. Healthcare Mater.) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

39	Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking. ACS Applied Materials & Interfaces, 2015, 7, 12099-12108.	4.0	60
40	Magnetic Levitational Assembly for Living Material Fabrication. Advanced Healthcare Materials, 2015, 4, 1469-1476.	3.9	84
41	Assessing the Impact of Electrohydrodynamic Jetting on Encapsulated Cell Viability, Proliferation, and Ability to Self-Assemble in Three-Dimensional Structures. Tissue Engineering - Part C: Methods, 2015, 21, 631-638.	1.1	20
42	Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E51-E64.	1.3	25
43	Modulating the release of drugs from alginate matrices with the addition of gelatin microbeads. Journal of Bioactive and Compatible Polymers, 2014, 29, 193-207.	0.8	9
44	Physico-chemical characterization and biological evaluation of two fibroin materials. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 874-885.	1.3	4
45	Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2014, 116, 666-673.	2.5	43
46	Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials, 2013, 34, 4573-4581.	5.7	56
47	Tailored intracellular delivery via a crystal phase transition in 400 nm vaterite particles. Biomaterials Science, 2013, 1, 1273.	2.6	86
48	Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 2013, 34, 4945-4955.	5.7	83
49	Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 2013, 14, 38-47.	2.6	103
50	Hydroxyapatite nanorods: Soft-template synthesis, characterization and preliminary <i>inÂvitro</i> tests. Journal of Biomaterials Applications, 2013, 28, 49-61.	1.2	38
51	Influence of scaffold pore size on collagen I development: A new in vitro evaluation perspective. Journal of Bioactive and Compatible Polymers, 2013, 28, 16-32.	0.8	48
52	The optimization of a scaffold for cartilage regeneration. Organogenesis, 2013, 9, 19-21.	0.4	4
53	Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fibers. Journal of Polymers and the Environment, 2012, 20, 801-809.	2.4	26
54	Fibroin Scaffold Repairs Critical-Size Bone Defects <i>In Vivo</i> Supported by Human Amniotic Fluid and Dental Pulp Stem Cells. Tissue Engineering - Part A, 2012, 18, 1006-1013.	1.6	104

CLAUDIO MIGLIARESI

#	Article	IF	CITATIONS
55	Carbon Dioxide Induced Silk Protein Gelation for Biomedical Applications. Biomacromolecules, 2012, 13, 2060-2072.	2.6	74
56	Biomolecule Gradient in Micropatterned Nanofibrous Scaffold for Spatiotemporal Release. Langmuir, 2012, 28, 13675-13687.	1.6	33
57	Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomaterialia, 2012, 8, 1551-1559.	4.1	119
58	One-step process to create porous structures in cross-linked polymer films via breath-figure formations during in situ cross-linking reactions. Polymer, 2011, 52, 5102-5106.	1.8	29
59	Scaffold vascularization inÂvivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials, 2011, 32, 8150-8160.	5.7	111
60	Human Amniotic Fluid Stem Cells Seeded in Fibroin Scaffold Produce <i>In Vivo</i> Mineralized Matrix. Tissue Engineering - Part A, 2011, 17, 2833-2843.	1.6	50
61	Interplay of kinetics and interfacial interactions in breath figure templating – A phenomenological interpretation. Polymer, 2010, 51, 2337-2344.	1.8	39
62	The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials, 2010, 31, 4672-4681.	5.7	137
63	The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials, 2010, 31, 6959-6967.	5.7	197
64	Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.	1.3	46
65	XPS Characterization of Iron Oxide and Gold Nanoparticles for Tumor Care. Advances in Science and Technology, 2010, 76, 165-170.	0.2	2
66	Carbon Coatings for Cardiovascular Applications: Physico-Chemical Properties and Blood Compatibility. Journal of Biomaterials Applications, 2010, 25, 57-74.	1.2	15
67	Electrodeposition of Silk Fibroin on Metal Substrates. Journal of Bioactive and Compatible Polymers, 2010, 25, 441-454.	0.8	37
68	Comparative Methods for the Evaluation of Protein Adsorption. Macromolecular Bioscience, 2009, 9, 661-670.	2.1	6
69	Physical properties of polyhedral oligomeric silsesquioxanes–cycloolefin copolymer nanocomposites. Journal of Applied Polymer Science, 2009, 114, 2270-2279.	1.3	35
70	Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials, 2009, 30, 1329-1338.	5.7	150
71	Silk Fibroin Processing and Thrombogenic Responses. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1875-1897.	1.9	54
72	Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size. Biomaterials, 2008, 29, 561-572.	5.7	117

CLAUDIO MIGLIARESI

#	Article	IF	CITATIONS
73	Genipinâ€Modified Silkâ€Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.	2.1	71
74	Folding and Assembly of Fibroin Driven by an AC Electric Field: Effects on Film Properties. Macromolecular Bioscience, 2008, 8, 827-835.	2.1	33
75	Quantitative Analysis of Protein Adsorption via Atomic Force Microscopy and Surface Plasmon Resonance. Macromolecular Bioscience, 2008, 8, 1126-1134.	2.1	29
76	Experimental optimization of the impact energy absorption of epoxy–carbon laminates through controlled delamination. Composites Science and Technology, 2008, 68, 2653-2662.	3.8	41
77	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	2.6	240
78	Plasma Protein Adsorption and Platelet Adhesion on Heparin-Immobilized Polyurethane Films. Journal of Bioactive and Compatible Polymers, 2008, 23, 505-519.	0.8	34
79	Microstructure and nematic transition in thermotropic liquid crystalline fibers and their single polymer composites. Polymers for Advanced Technologies, 2007, 18, 771-779.	1.6	13
80	Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 2007, 28, 3965-3976.	5.7	361
81	Biodegradable Fibers of Poly-L, DL-lactide 70/30 Produced by Melt Spinning. Macromolecular Symposia, 2006, 234, 20-25.	0.4	19
82	Preparation and tensile mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 2006, 66, 1970-1979.	3.8	59
83	Flexural and interlaminar mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 2006, 66, 1953-1962.	3.8	34
84	Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials, 2006, 27, 5399-5408.	5.7	129
85	Atomic force acoustic microscopy analysis of epoxy–silica nanocomposites. Polymer Testing, 2006, 25, 443-451.	2.3	36
86	Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer, 2005, 46, 12065-12072.	1.8	217
87	Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts. Macromolecular Bioscience, 2005, 5, 1175-1183.	2.1	96
88	Preparation and physico-chemical characterisation of microporous polysaccharidic hydrogels. Journal of Materials Science: Materials in Medicine, 2004, 15, 463-467.	1.7	17
89	Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials, 2004, 25, 1069-1075.	5.7	241
90	Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: tensile and impact properties. Polymer International, 2004, 53, 1290-1297.	1.6	126

CLAUDIO MIGLIARESI

#	Article	IF	CITATIONS
91	Evaluation and quantification of reprocessing modification in single-use devices in interventional cardiology. Applied Surface Science, 2004, 238, 341-346.	3.1	15
92	Characterization of modulus and glass transition phenomena in poly(L-lactide)/hydroxyapatite composites. Polymer Composites, 2003, 24, 100-108.	2.3	22
93	Serum Protein Absorption on Silk Fibroin Fibers and Films: Surface Opsonization and Binding Strength. Journal of Bioactive and Compatible Polymers, 2002, 17, 23-35.	0.8	37
94	Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromolecular Chemistry and Physics, 2002, 203, 1658-1665.	1.1	223
95	Microcomposites of Poly(-caprolactone) and Poly(methyl methacrylate) Prepared by Suspension Polymerization in the Presence of Poly(-caprolactone) Macromonomer. Macromolecular Materials and Engineering, 2002, 287, 938-945.	1.7	4
96	Effect of hydrothermal aging on the thermo-mechanical properties of a composite dental prosthetic material. Polymer Composites, 2002, 23, 342-351.	2.3	16
97	Poly(ε-caprolactone-co-D,L-lactide)/silk fibroin composite materials: Preparation and characterization. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 337-351.	1.9	29
98	Microheterogeneous polymer systems prepared by suspension polymerization of methyl methacrylate in the presence of poly(-caprolactone). Macromolecular Materials and Engineering, 2000, 282, 44-50.	1.7	24
99	Interfacial stress transfer in nylon-6/E-Glass microcomposites: Effect of temperature and strain rate. Polymer Composites, 2000, 21, 466-475.	2.3	26
100	Preparation and properties of poly(L-lactide)/hydroxyapatite composites. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 617-632.	1.9	40
101	Processing and in vitro degradation of poly(lâ€lactic acid) fibres. Macromolecular Symposia, 1997, 123, 155-161.	0.4	13
102	In situ polymerization of functional monomers in rubbers: 1. Modification of silicone rubbers by a poly(ester thioether amine) based on piperazine. Polymer, 1994, 35, 5571-5576.	1.8	4
103	Polyethylene fibers-polyethylene matrix composites: Preparation and physical properties. Journal of Applied Polymer Science, 1993, 50, 503-512.	1.3	105
104	The mechanical role of the fibre/matrix transcrystalline interphase in carbon fibre reinforced j-polymer microcomposites. Composites Science and Technology, 1993, 47, 43-50.	3.8	55
105	The influence of thermal history on the mechanical properties of poly(ether ether ketone) matrix composite materials. Composites Science and Technology, 1993, 48, 185-190.	3.8	50
106	Photocured dental restorative materials: Effect of exposure time on curing, glass transition, modulus and water sorption. Clinical Materials, 1991, 8, 145-153.	0.5	2
107	Preparation and strength of poly(ethylene terephthalate) fiber bundles for model synthetic tendons. Journal of Biomedical Materials Research Part B, 1984, 18, 115-121.	3.0	3
108	Mechanical properties of hydrophilic copolymers of 2-hydroxyethyl methacrylate with ethyl acrylate,n-butyl acrylate, and dodecyl methacrylate. Journal of Biomedical Materials Research Part B, 1983, 17, 757-767.	3.0	14

#	Article	IF	CITATIONS
109	Physical characterization of layered perovskites–polystyrene composites. Journal of Applied Polymer Science, 1980, 25, 2857-2868.	1.3	1