
Lisa W Seeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2694846/publications.pdf Version: 2024-02-01

LISA W/ SEER

#	Article	IF	CITATIONS
1	Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (<i>Oncorhynchus tshawytscha</i>). Evolutionary Applications, 2014, 7, 355-369.	3.1	178
2	Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotypingâ€byâ€sequencing data from natural populations. Molecular Ecology Resources, 2017, 17, 656-669.	4.8	167
3	Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Molecular Ecology, 2005, 14, 4193-4203.	3.9	165
4	Managing fisheries using genetic data: case studies from four species of Pacific salmon. Fisheries Research, 1999, 43, 45-78.	1.7	140
5	<scp>RAD</scp> seq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking <scp>RAD</scp> by Lowry <i>etÂal</i> . (2016). Molecular Ecology Resources, 2017, 17, 356-361.	4.8	112
6	Effects of Crossovers Between Homeologs on Inheritance and Population Genomics in Polyploid-Derived Salmonid Fishes. Journal of Heredity, 2015, 106, 217-227.	2.4	97
7	SNP Genotyping by the 5′-Nuclease Reaction: Advances in High-Throughput Genotyping with Nonmodel Organisms. Methods in Molecular Biology, 2009, 578, 277-292.	0.9	78
8	Single-nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing improve genetic stock identification of Chinook salmon (<i>Oncorhynchus tshawytscha</i>) from western Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 698-708.	1.4	74
9	Singleâ€Nucleotide Polymorphisms (SNPs) under Diversifying Selection Provide Increased Accuracy and Precision in Mixedâ€Stock Analyses of Sockeye Salmon from the Copper River, Alaska. Transactions of the American Fisheries Society, 2011, 140, 865-881.	1.4	70
10	Genetic Population Structure of Chum Salmon in the Pacific Rim Inferred from Mitochondrial DNA Sequence Variation. Environmental Biology of Fishes, 2004, 69, 37-50.	1.0	69
11	DNA and allozyme markers provide concordant estimates of population differentiation: analyses of U.S. and Canadian populations of Yukon River fall-run chum salmon (Oncorhynchus keta). Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1748-1758.	1.4	62
12	Single Nucleotide Polymorphisms Provide Rapid and Accurate Estimates of the Proportions of U.S. and Canadian Chinook Salmon Caught in Yukon River Fisheries. North American Journal of Fisheries Management, 2005, 25, 944-953.	1.0	62
13	Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Molecular Ecology, 2017, 26, 554-570.	3.9	62
14	Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. Molecular Ecology, 2019, 28, 1412-1427.	3.9	58
15	High Genetic Heterogeneity in Chum Salmon in Western Alaska, the Contact Zone between Northern and Southern Lineages. Transactions of the American Fisheries Society, 1999, 128, 58-87.	1.4	54
16	Genetic Diversity of Sockeye Salmon of Cook Inlet, Alaska, and Its Application to Management of Populations Affected by the <i>Exxon Valdez</i> Oil Spill. Transactions of the American Fisheries Society, 2000, 129, 1223-1249.	1.4	53
17	Allozymes and Mitochondrial DNA Discriminate Asian and North American Populations of Chum Salmon in Mixed-Stock Fisheries along the South Coast of the Alaska Peninsula. Transactions of the American Fisheries Society, 1999, 128, 88-103.	1.4	52
18	Number of Alleles as a Predictor of the Relative Assignment Accuracy of Short Tandem Repeat (STR) and Singleâ€Nucleotideâ€Polymorphism (SNP) Baselines for Chum Salmon. Transactions of the American Fisheries Society, 2008, 137, 751-762.	1.4	52

LISA W SEEB

#	Article	IF	CITATIONS
19	Complementary uses of ecological and biochemical genetic data in identifying and conserving salmon populations. Fisheries Research, 1993, 18, 59-76.	1.7	51
20	Managing mixed-stock fisheries: genotyping multi-SNP haplotypes increases power for genetic stock identification. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 429-434.	1.4	51
21	Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Molecular Ecology Resources, 2011, 11, 268-277.	4.8	50
22	Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 415-435.	1.4	50
23	Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing. Molecular Ecology, 2016, 25, 2117-2129.	3.9	46
24	Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations. BMC Evolutionary Biology, 2011, 11, 48.	3.2	45
25	Genetic Variation and Postglacial Dispersal of Populations of Northern Pike (<i>Esox lucius</i>) in North America. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 556-561.	1.4	44
26	Spawning Habitat and Geography Influence Population Structure and Juvenile Migration Timing of Sockeye Salmon in the Wood River Lakes, Alaska. Transactions of the American Fisheries Society, 2011, 140, 763-782.	1.4	44
27	Identification of Multiple QTL Hotspots in Sockeye Salmon (<i>Oncorhynchus nerka</i>) Using Genotyping-by-Sequencing and a Dense Linkage Map. Journal of Heredity, 2016, 107, 122-133.	2.4	43
28	Rank and Order: Evaluating the Performance of SNPs for Individual Assignment in a Non-Model Organism. PLoS ONE, 2012, 7, e49018.	2.5	42
29	Impacts of Marker Class Bias Relative to Locus-Specific Variability on Population Inferences in Chinook Salmon: A Comparison of Single-Nucleotide Polymorphisms with Short Tandem Repeats and Allozymes. Transactions of the American Fisheries Society, 2007, 136, 1674-1687.	1.4	41
30	Signatures of natural selection among lineages and habitats in <i>Oncorhynchus mykiss</i> . Ecology and Evolution, 2012, 2, 1-18.	1.9	41
31	Genetic Relationships Among Salvelinus Species Inferred from Allozyme Data. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 182-197.	1.4	39
32	Transforming ecology and conservation biology through genome editing. Conservation Biology, 2020, 34, 54-65.	4.7	39
33	Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Molecular Ecology Resources, 2011, 11, 226-246.	4.8	38
34	Genetic Interpretation of Broad-Scale Microsatellite Polymorphism in Odd-Year Pink Salmon. Transactions of the American Fisheries Society, 1998, 127, 535-550.	1.4	37
35	Single-nucleotide polymorphisms reveal distribution and migration of Chinook salmon (<i>Oncorhynchus tshawytscha</i>) in the Bering Sea and North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 128-141.	1.4	37
36	Use of the 5′-Nuclease Reaction for Single Nucleotide Polymorphism Genotyping in Chinook Salmon. Transactions of the American Fisheries Society, 2005, 134, 207-217.	1.4	34

LISA W SEEB

#	Article	IF	CITATIONS
37	Genetic variation in allozymes of western larch. Canadian Journal of Forest Research, 1986, 16, 1013-1018.	1.7	33
38	Dense SNP panels resolve closely related Chinook salmon populations. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 451-461.	1.4	33
39	Identification and Characterization of Sex-Associated Loci in Sockeye Salmon Using Genotyping-by-Sequencing and Comparison with a Sex-Determining Assay Based on thesdYGene. Journal of Heredity, 2016, 107, 559-566.	2.4	32
40	Genetic and Ecological Divergence Defines Population Structure of Sockeye Salmon Populations Returning to Bristol Bay, Alaska, and Provides a Tool for Admixture Analysis. Transactions of the American Fisheries Society, 2007, 136, 82-94.	1.4	31
41	Signals of heterogeneous selection at an <scp>MHC</scp> locus in geographically proximate ecotypes of sockeye salmon. Molecular Ecology, 2014, 23, 5448-5461.	3.9	30
42	Temporally Isolated Lineages of Pink Salmon Reveal Unique Signatures of Selection on Distinct Pools of Standing Genetic Variation. Journal of Heredity, 2014, 105, 835-845.	2.4	30
43	Resolving allele dosage in duplicated loci using genotypingâ€byâ€sequencing data: A path forward for population genetic analysis. Molecular Ecology Resources, 2018, 18, 570-579.	4.8	28
44	Temporal and Geographic Genetic Divergence: Characterizing Sockeye Salmon Populations in the Chignik Watershed, Alaska, Using Singleâ€Nucleotide Polymorphisms. Transactions of the American Fisheries Society, 2011, 140, 749-762.	1.4	26
45	Highâ€Resolution Melting Analysis for the Discovery of Novel Singleâ€Nucleotide Polymorphisms in Rainbow and Cutthroat Trout for Species Identification. Transactions of the American Fisheries Society, 2010, 139, 676-684.	1.4	25
46	Network Analysis of Linkage Disequilibrium Reveals Genome Architecture in Chum Salmon. G3: Genes, Genomes, Genetics, 2020, 10, 1553-1561.	1.8	24
47	Landscape heterogeneity and local adaptation define the spatial genetic structure of Pacific salmon in a pristine environment. Conservation Genetics, 2013, 14, 483-498.	1.5	22
48	Parallel signatures of selection in temporally isolated lineages of pink salmon. Molecular Ecology, 2014, 23, 2473-2485.	3.9	22
49	Development of Genomic Resources for Pacific Herring through Targeted Transcriptome Pyrosequencing. PLoS ONE, 2012, 7, e30908.	2.5	22
50	Thirty-eight single nucleotide polymorphism markers for high-throughput genotyping of chum salmon. Molecular Ecology Notes, 2007, 7, 1211-1215.	1.7	19
51	Recombination patterns reveal information about centromere location on linkage maps. Molecular Ecology Resources, 2016, 16, 655-661.	4.8	19
52	The application of genomics to inform conservation of a functionally important reef fish (Scarus) Tj ETQq0 0 0 rg	BT ₁ /Overlo	ck 10 Tf 50 1

53	Single-Nucleotide Polymorphic Genotypes Reveal Patterns of Early Juvenile Migration of Sockeye Salmon in the Eastern Bering Sea. Transactions of the American Fisheries Society, 2011, 140, 734-748.	1.4	18
54	Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome. Molecular Ecology, 2017, 26, 4509-4522.	3.9	18

#	Article	IF	CITATIONS
55	Genetic signals of artificial and natural dispersal linked to colonization of South America by nonâ€native Chinook salmon (<i>Oncorhynchus tshawytscha</i>). Ecology and Evolution, 2018, 8, 6192-6209.	1.9	17

56 Fine-scale sampling reveals distinct isolation by distance patterns in chum salmon (Oncorhynchus) Tj ETQq0 0 0 rg $_{1.5}^{BT}$ /Overlock 10 Tf 50

57	A general model for salmon run reconstruction that accounts for interception and differences in availability to harvest. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 439-451.	1.4	16
58	Low allozyme heterozygosity in North Pacific and Bering Sea populations of red king crab (Paralithodes camtschaticus): adaptive specialization, population bottleneck, or metapopulation structure?. ICES Journal of Marine Science, 2011, 68, 499-506.	2.5	15
59	Chum Salmon Genetic Diversity in the Northeastern Pacific Ocean Assessed with Single Nucleotide Polymorphisms (SNPs): Applications to Fishery Management. North American Journal of Fisheries Management, 2015, 35, 974-987.	1.0	14
60	Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Molecular Ecology, 2019, 28, 2254-2271.	3.9	14
61	The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. PLoS ONE, 2021, 16, e0255752.	2.5	14
62	Genetic Structure and Diversity of Japanese Chum Salmon Populations Inferred from Single-Nucleotide Polymorphism Markers. Transactions of the American Fisheries Society, 2014, 143, 1231-1246.	1.4	13
63	Allozyme polymorphisms permit the identification of larval and juvenile rockfishes of the genusSebastes. Environmental Biology of Fishes, 1991, 30, 191-201.	1.0	12
64	Y hromosome haplotypes are associated with variation in size and age at maturity in male Chinook salmon. Evolutionary Applications, 2020, 13, 2791-2806.	3.1	12
65	How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon. PLoS ONE, 2013, 8, e58584.	2.5	11
66	Consequences of Emergence Timing for the Growth and Relative Survival of Steelhead Fry from Naturally Spawning Wild and Hatchery Parents. Transactions of the American Fisheries Society, 2015, 144, 977-989.	1.4	10
67	Contrasting genetic metrics and patterns among naturalized rainbow trout (<i>Oncorhynchus) Tj ETQq1 1 0.784 Evolution, 2018, 8, 273-285.</i>	1314 rgBT 1.9	/Overlock 10
68	Hierarchical biogeographical processes largely explain the genomic divergence pattern in a species complex of sea anemones (Metridioidea: Sagartiidae: Anthothoe). Molecular Phylogenetics and Evolution, 2018, 127, 217-228.	2.7	8
69	Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming. PLoS ONE, 2015, 10, e0142040.	2.5	7
70	Deep sequencing of the transcriptome and mining of single nucleotide polymorphisms (SNPs) provide genomic resources for applied studies in Chinook salmon (Oncorhynchus tshawytscha). Conservation Genetics Resources, 2014, 6, 807-811.	0.8	6
71	Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population. Conservation Genetics Resources, 2018, 10, 169-171.	0.8	5
72	Mixed-stock analyses of migratory, non-native Chinook salmon at sea and assignment to natal sites in fresh water at their introduced range in South America. Biological Invasions, 2020, 22, 3175-3182.	2.4	5

#	Article	IF	CITATIONS
73	"Chromosomes and genes, spawned these fateful scenes†Rapid adaptation in an introduced fish. Molecular Ecology, 2018, 27, 3965-3967.	3.9	1
74	Response to May and Delany: We Never Said Wright was Wrong. Journal of Heredity, 2015, 106, esv072.	2.4	0