Ravishankar Sundararaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2694135/publications.pdf

Version: 2024-02-01

109137 53109 7,441 87 35 85 citations g-index h-index papers 91 91 91 8527 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interfacial water asymmetry at ideal electrochemical interfaces. Journal of Chemical Physics, 2022, 156, 014705.	1.2	12
2	Behavior of Linear and Nonlinear Dimensionality Reduction for Collective Variable Identification of Small Molecule Solution-Phase Reactions. Journal of Chemical Theory and Computation, 2022, 18, 1286-1296.	2.3	2
3	Electric fields and substrates dramatically accelerate spin relaxation in graphene. Physical Review B, 2022, 105, .	1.1	4
4	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	23.0	39
5	Trap dynamics of hot electrons in metal–insulator–metal plasmonic structures for ultra-fast optoelectronics. Journal of Applied Physics, 2022, 131, 194501.	1.1	0
6	(Invited) Combining Machine Learning, DFT, EFM, and Modeling to Design Nanodielectric Behavior. ECS Transactions, 2022, 108, 51-60.	0.3	1
7	Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nature Photonics, 2022, 16, 529-537.	15.6	35
8	Dielectric properties of polymer nanocomposite interphases from electrostatic force microscopy using machine learning. Materials Characterization, 2021, 173, 110909.	1.9	11
9	Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Nb</mml:mi><mml:mphysical 103.<="" 2021,="" b.="" review="" td=""><td>n>3<td>l:mn></td></td></mml:mphysical></mml:msub></mml:mrow></mml:math>	n>3 <td>l:mn></td>	l:mn>
10	Temperature dependent electron–phonon coupling of Au resolved via lattice dynamics measured with sub-picosecond infrared pulses. Journal of Applied Physics, 2021, 129, .	1.1	8
11	Resistivity scaling in epitaxial MAX-phase Ti4SiC3(0001) layers. Journal of Applied Physics, 2021, 130, .	1.1	8
12	Importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): <i>Ab initio</i> theory with experimental comparisons. Physical Review B, 2021, 104, .	1.1	4
13	Plasmonic hot carriers scratch the surface. Trends in Chemistry, 2021, , .	4.4	9
14	Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms. Journal of Physical Chemistry A, 2021, 125, 154-164.	1.1	24
15	Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials. Journal of Applied Physics, 2021, 129, .	1.1	14
16	Materials for interconnects. MRS Bulletin, 2021, 46, 959-966.	1.7	33
17	Resolving the Geometry/Charge Puzzle of the c(2 \tilde{A} — 2)-Cl Cu(100) Electrode. Journal of Physical Chemistry Letters, 2021, 12, 440-446.	2.1	2
18	Giant Spin Lifetime Anisotropy and Spin-Valley Locking in Silicene and Germanene from First-Principles Density-Matrix Dynamics. Nano Letters, 2021, 21, 9594-9600.	4.5	7

#	Article	IF	CITATIONS
19	<i>Ab initio</i> ultrafast spin dynamics in solids. Physical Review B, 2021, 104, .	1.1	10
20	Coupled Electromagnetic and Reaction Kinetics Simulation of Super-Resolution Interference Lithography. Journal of Physical Chemistry B, 2020, 124, 7717-7724.	1.2	1
21	Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 2020, 19, 1312-1318.	13.3	138
22	Spin-phonon relaxation from a universal ab initio density-matrix approach. Nature Communications, 2020, 11, 2780.	5. 8	26
23	First-principles identification of localized trap states in polymer nanocomposite interfaces. Journal of Materials Research, 2020, 35, 931-939.	1.2	5
24	A chiral switchable photovoltaic ferroelectric 1D perovskite. Science Advances, 2020, 6, eaay4213.	4.7	119
25	Layer dependence of defect charge transition levels in two-dimensional materials. Physical Review B, 2020, 101, .	1.1	19
26	The electrochemical interface in first-principles calculations. Surface Science Reports, 2020, 75, 100492.	3.8	89
27	A perspective on the data-driven design of polymer nanodielectrics. Journal Physics D: Applied Physics, 2020, 53, 333001.	1.3	15
28	Hot-Hole <i>versus</i> Hot-Electron Transport at Cu/GaN Heterojunction Interfaces. ACS Nano, 2020, 14, 5788-5797.	7.3	53
29	Plasmonics in argentene. Physical Review Materials, 2020, 4, .	0.9	15
30	Near-Zero Negative Real Permittivity in Far Ultraviolet: Extending Plasmonics and Photonics with B1-MoN <i></i> . Journal of Physical Chemistry C, 2019, 123, 21120-21129.	1.5	10
31	Electron mobility in graphene without invoking the Dirac equation. American Journal of Physics, 2019, 87, 291-295.	0.3	13
32	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. Nano Letters, 2019, 19, 3091-3097.	4.5	39
33	Hydrodynamic and ballistic AC transport in two-dimensional Fermi liquids. Physical Review B, 2019, 99,	1.1	17
34	Lead-related quantum emitters in diamond. Physical Review B, 2019, 99, .	1,1	78
35	Quantification of functional crosslinker reaction kineticsviasuper-resolution microscopy of swollen microgels. Soft Matter, 2019, 15, 9336-9342.	1.2	11
36	Transport of hot carriers in plasmonic nanostructures. Physical Review Materials, 2019, 3, .	0.9	30

#	Article	IF	CITATIONS
37	Substrate effects on charged defects in two-dimensional materials. Physical Review Materials, 2019, 3, .	0.9	16
38	The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges. Journal of Applied Physics, 2018, 123, .	1.1	44
39	Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations. Journal of Chemical Physics, 2018, 148, 144105.	1.2	37
40	Hot carrier dynamics in plasmonic transition metal nitrides. Journal of Optics (United Kingdom), 2018, 20, 064001.	1.0	73
41	Ultralight Angstrom-Scale Optimal Optical Reflectors. ACS Photonics, 2018, 5, 384-389.	3.2	9
42	Microscopic origins of hydrodynamic transport in the type-II Weyl semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WP</mml:mi><mml:mn>2<td>nn≽.≰/mml:</td><td>:ms:6lb></td></mml:mn></mml:msub></mml:math>	nn ≽. ≰/mml:	:m s:6 lb>
43	Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a $Pt(111)$ electrode. Electrochimica Acta, 2018, 281, 127-132.	2.6	31
44	Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides. Nano Letters, 2018, 18, 5709-5715.	4.5	49
45	Designing High-Accuracy Permanent Magnets for Low-Power Magnetic Resonance Imaging. IEEE Transactions on Magnetics, 2018, 54, 1-9.	1.2	2
46	Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nature Communications, 2018, 9, 3394.	5.8	147
47	Experimental and <i>AbÂlnitio</i> Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical Review Letters, 2017, 118, 087401.	2.9	116
48	Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement. Journal of Chemical Physics, 2017, 146, 084111.	1.2	79
49	Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry. Journal of Chemical Physics, 2017, 146, 114104.	1.2	211
50	Effects of Interlayer Coupling on Hotâ€Carrier Dynamics in Grapheneâ€Derived van der Waals Heterostructures. Advanced Optical Materials, 2017, 5, 1600914.	3.6	35
51	Plasmonic hot electron transport drives nano-localized chemistry. Nature Communications, 2017, 8, 14880.	5.8	328
52	First-principles electrostatic potentials for reliable alignment at interfaces and defects. Journal of Chemical Physics, 2017, 146, 104109.	1.2	49
53	Plasmonic tunnel junctions for single-molecule redox chemistry. Nature Communications, 2017, 8, 994.	5.8	116
54	Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO–Solvent Gap. Journal of Physical Chemistry Letters, 2017, 8, 5344-5348.	2.1	30

#	Article	IF	CITATIONS
55	Energy level alignment at semiconductor–water interfaces from atomistic and continuum solvation models. RSC Advances, 2017, 7, 43660-43670.	1.7	16
56	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
57	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
58	JDFTx: Software for joint density-functional theory. SoftwareX, 2017, 6, 278-284.	1.2	238
59	Increased rise time of electron temperature during adiabatic plasmon focusing. Nature Communications, 2017, 8, 1656.	5.8	23
60	First-principles engineering of charged defects for two-dimensional quantum technologies. Physical Review Materials, 2017, 1 , .	0.9	64
61	Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges. Physical Chemistry Chemical Physics, 2016, 18, 16216-16223.	1.3	40
62	Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, 2016, 5, 96-111.	2.9	237
63	<i>Ab initio</i> phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B, 2016, 94, .	1.1	124
64	Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems. Journal of Physical Chemistry C, 2016, 120, 21056-21062.	1.5	17
65	Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano, 2016, 10, 957-966.	7.3	534
66	Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Journal of the American Chemical Society, 2016, 138, 483-486.	6.6	381
67	Solvation effects on the band edge positions of photocatalysts from first principles. Physical Chemistry Chemical Physics, 2015, 17, 30499-30509.	1.3	47
68	Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility <i>ansatz</i> . Journal of Chemical Physics, 2015, 142, 054102.	1.2	48
69	Computationally efficient dielectric calculations of molecular crystals. Journal of Chemical Physics, 2015, 142, 214101.	1.2	2
70	The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. Journal of Chemical Physics, 2015, 142, 064107.	1.2	167
71	Formic acid oxidation on platinum: a simple mechanistic study. Physical Chemistry Chemical Physics, 2015, 17, 20805-20813.	1.3	56
72	Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications, 2014, 5, 5788.	5.8	600

#	Article	IF	CITATIONS
73	Efficient classical density-functional theories of rigid-molecular fluids and a simplified free energy functional for liquid water. Computer Physics Communications, 2014, 185, 818-825.	3.0	35
74	A recipe for free-energy functionals of polarizable molecular fluids. Journal of Chemical Physics, 2014, 140, 144504.	1.2	24
75	Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140, 084106.	1.2	1,676
76	Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models. Journal of Chemical Physics, 2014, 141, 134105.	1.2	26
77	Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte. Nano Letters, 2014, 14, 1453-1459.	4.5	238
78	Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of a Battery Electrode and Electrolyte. Microscopy and Microanalysis, 2014, 20, 1524-1525.	0.2	2
79	The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074005.	0.8	177
80	Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems. Physical Review B, 2013, 87, .	1.1	102
81	Charge Trapping Devices Using a Bilayer Oxide Structure. Journal of Nanoscience and Nanotechnology, 2012, 12, 423-427.	0.9	5
82	Framework for solvation in quantum Monte Carlo. Physical Review B, 2012, 85, .	1.1	14
83	A computationally efficacious free-energy functional for studies of inhomogeneous liquid water. Journal of Chemical Physics, 2012, 137, 044107.	1.2	29
84	A Low-Voltage Torsion Nanorelay. IEEE Electron Device Letters, 2011, 32, 414-416.	2.2	8
85	A single lithography vertical NEMS switch. , 2011, , .		2
86	A universal semiempirical model for the Fowler–Nordheim programming of charge trapping devices. Applied Physics Letters, 2010, 96, 023502.	1.5	0
87	Design Concepts of Optimized MRI Magnet. IEEE Transactions on Magnetics, 2008, 44, 2351-2360.	1.2	21