Ping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693949/publications.pdf Version: 2024-02-01

		21215	21843
286	16,430	62	118
papers	citations	h-index	g-index
312	312	312	13826
all docs	docs citations	times ranked	citing authors

PINC CHEN

#	Article	IF	CITATIONS
1	NaH doped TiO2 as a high-performance catalyst for Mg/MgH2 cycling stability and room temperature absorption. Journal of Magnesium and Alloys, 2023, 11, 2740-2749.	5.5	7
2	Ru Nanoparticles on Pr2O3 as an Efficient Catalyst for Hydrogen Production from Ammonia Decomposition. Catalysis Letters, 2022, 152, 1170-1181.	1.4	21
3	Potassium hydride reduced black TiO2â^'x for boosting the hydrogenation of magnesium at room temperature. Journal of Alloys and Compounds, 2022, 897, 162750.	2.8	6
4	Synergizing Surface Hydride Species and Ru Clusters on Sm ₂ O ₃ for Efficient Ammonia Synthesis. ACS Catalysis, 2022, 12, 2178-2190.	5.5	23
5	De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH2)n-2nLiH Systems (A = Li, K, Na, and Rb). Sustainability, 2022, 14, 1672.	1.6	2
6	Defect-rich potassium amide: A new solid-state potassium ion electrolyte. Journal of Energy Chemistry, 2022, 69, 555-560.	7.1	7
7	Room Temperature Hydrogen Absorption of V ₂ O ₅ Catalyzed MgH ₂ /Mg [※] . Acta Chimica Sinica, 2022, 80, 303.	0.5	6
8	Sensitive detection of glyoxal by cluster-mediated CH2Br2+ chemical ionization time-of-flight mass spectrometry. Analytica Chimica Acta, 2022, 1206, 339612.	2.6	4
9	Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3Pb catalysts. Nano Research, 2022, 15, 4973-4979.	5.8	7
10	Hydrides mediate nitrogen fixation. Cell Reports Physical Science, 2022, 3, 100779.	2.8	13
11	Formation of a Complex Active Center by Ba ₂ RuH ₆ for Nondissociative Dinitrogen Activation and Ammonia Formation. ACS Catalysis, 2022, 12, 4194-4202.	5.5	15
12	A Strategy for Simultaneously Improving Resolution and Sensitivity of Hybrid Quadrupole Ion Trap/Time-of-Flight Mass Spectrometry Using Square Waveform Phase Modulation. Journal of the American Society for Mass Spectrometry, 2022, 33, 322-327.	1.2	2
13	Dinitrogen fixation mediated by lanthanum hydride. Journal of Energy Chemistry, 2022, 72, 1-7.	7.1	4
14	Spectroscopic Characterization of the Synergistic Mechanism of Ruthenium–Lithium Hydrides for Dinitrogen Cleavage. Journal of Physical Chemistry Letters, 2022, 13, 3937-3941.	2.1	2
15	Microwave-assisted reduction of Ti species in MgH2-TiO2 composite and its effect on hydrogen storage. Chemical Engineering Journal, 2022, 450, 138072.	6.6	14
16	A multi-functional composite nitrogen carrier for ammonia production <i>via</i> a chemical looping route. Journal of Materials Chemistry A, 2021, 9, 1039-1047.	5.2	32
17	<i>In situ</i> formed Co from a Co–Mg–O solid solution synergizing with LiH for efficient ammonia synthesis. Chemical Communications, 2021, 57, 8576-8579.	2.2	11
18	Metal–support interaction-modulated catalytic activity of Ru nanoparticles on Sm2O3 for efficient ammonia decomposition. Catalysis Science and Technology, 2021, 11, 2915-2923.	2.1	20

#	Article	IF	CITATIONS
19	Highly Dispersed Ruthenium Nanoparticles on Y ₂ O ₃ as Superior Catalyst for Ammonia Decomposition. ChemCatChem, 2021, 13, 1552-1558.	1.8	26
20	Lithium Palladium Hydride Promotes Chemical Looping Ammonia Synthesis Mediated by Lithium Imide and Hydride. Journal of Physical Chemistry C, 2021, 125, 6716-6722.	1.5	29
21	Atomically Dispersed Pd Atoms on a Simple MgO Support with an Ultralow Loading for Selective Hydrogenation of Acetylene to Ethylene. Chemistry - an Asian Journal, 2021, 16, 1225-1228.	1.7	5
22	Emerging Materials and Methods toward Ammoniaâ€Based Energy Storage and Conversion. Advanced Materials, 2021, 33, e2005721.	11.1	137
23	High Mass Resolution Multireflection Time-of-Flight Secondary Ion Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2021, 32, 1196-1204.	1.2	9
24	Interplay of Alkali, Transition Metals, Nitrogen, and Hydrogen in Ammonia Synthesis and Decomposition Reactions. Accounts of Chemical Research, 2021, 54, 2434-2444.	7.6	36
25	Developing Ideal Metalorganic Hydrides for Hydrogen Storage: From Theoretical Prediction to Rational Fabrication. , 2021, 3, 1417-1425.		13
26	Methods for nitrogen activation by reduction and oxidation. Nature Reviews Methods Primers, 2021, 1,	11.8	107
27	The Roles of Alkali/Alkaline Earth Metals in the Materials Design and Development for Hydrogen Storage. Accounts of Materials Research, 2021, 2, 726-738.	5.9	10
28	Regulation of Strong Metalâ€5upport Interaction by Alkaline Earth Metal Salts. Chemistry - an Asian Journal, 2021, 16, 2633-2640.	1.7	4
29	Recent Advances of Catalysis in the Hydrogenation and Dehydrogenation of N-Heterocycles for Hydrogen Storage. Journal of Physical Chemistry C, 2021, 125, 18553-18566.	1.5	29
30	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energy, 2021, 6, 904-912.	19.8	305
31	Barium chromium nitride-hydride for ammonia synthesis. Chem Catalysis, 2021, 1, 1042-1054.	2.9	19
32	The impact of alkali and alkaline earth metals on green ammonia synthesis. CheM, 2021, 7, 3203-3220.	5.8	19
33	Room Temperature Hydrogen Absorption of Mg/MgH ₂ Catalyzed by BaTiO ₃ . Journal of Physical Chemistry C, 2021, 125, 19631-19641.	1.5	16
34	Ammonia history in the making. Nature Catalysis, 2021, 4, 734-735.	16.1	23
35	Photoionization-induced NO+ chemical ionization time-of-flight mass spectrometry for rapid measurement of aldehydes and benzenes in vehicles. Talanta, 2021, 235, 122722.	2.9	1
36	Applications of rare earth oxides in catalytic ammonia synthesis and decomposition. Catalysis Science and Technology, 2021, 11, 6330-6343.	2.1	18

#	Article	IF	CITATIONS
37	Fabrication of oxygen vacancies through assembling an amorphous titanate overlayer on titanium oxide for a catalytic water–gas shift reaction. Journal of Materials Chemistry A, 2021, 9, 2784-2791.	5.2	19
38	Nonuniform Electric Field-Enhanced In-Source Declustering in High-Pressure Photoionization/Photoionization-Induced Chemical Ionization Mass Spectrometry for Operando Catalytic Reaction Monitoring. Analytical Chemistry, 2021, 93, 2207-2214.	3.2	11
39	Ru nanoparticles on a Cs-loaded MgO superbase as highly efficient catalysts for ammonia synthesis. Dalton Transactions, 2021, 50, 12074-12078.	1.6	6
40	Can nitrogen-based complex hydrides be a hydrogen isotope separation material?. Chemical Communications, 2021, 57, 10063-10066.	2.2	2
41	Hydrogen storage properties and reaction mechanisms of K2Mn(NH2)4–8LiH system. International Journal of Hydrogen Energy, 2021, 46, 40196-40196.	3.8	4
42	Fabrication of More Oxygen Vacancies and Depression of Encapsulation for Superior Catalysis in the Water–Gas Shift Reaction. Journal of Physical Chemistry Letters, 2021, 12, 10646-10653.	2.1	6
43	Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nature Catalysis, 2021, 4, 959-967.	16.1	67
44	Enabling Semihydrogenation of Alkynes to Alkenes by Using a Calcium Palladium Complex Hydride. Journal of the American Chemical Society, 2021, 143, 20891-20897.	6.6	20
45	Metallo-N-Heterocycles - A new family of hydrogen storage material. Energy Storage Materials, 2020, 26, 198-202.	9.5	22
46	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
47	Effect of BaNH, CaNH, Mg3N2 on the activity of Co in NH3 decomposition catalysis. Journal of Energy Chemistry, 2020, 46, 16-21.	7.1	22
48	High-Temperature Synthesis of Small-Sized Pt/Nb Alloy Catalysts on Carbon Supports for Hydrothermal Reactions. Inorganic Chemistry, 2020, 59, 15953-15961.	1.9	7
49	Thermochemical transformation and reversible performance of Mg(NH2)2–NaMgH3 system. International Journal of Hydrogen Energy, 2020, 45, 23069-23075.	3.8	7
50	A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13, 2735-2740.	5.8	18
51	Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chemical Science, 2020, 11, 7933-7939.	3.7	17
52	The Power of Hydrides. Joule, 2020, 4, 705-709.	11.7	23
53	Direct transformation of dinitrogen: synthesis of <i>N</i> -containing organic compounds via Nâ^'C bond formation. National Science Review, 2020, 7, 1564-1583.	4.6	114
54	Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH ₂) ₂ –LiH. Sustainable Energy and Fuels, 2020, 4, 1915-1923.	2.5	16

#	Article	IF	CITATIONS
55	Sodium anilinide–cyclohexylamide pair: synthesis, characterization, and hydrogen storage properties. Chemical Communications, 2020, 56, 1944-1947.	2.2	7
56	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie, 2020, 132, 4555-4561.	1.6	8
57	The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbonâ€Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2020, 59, 4525-4531.	7.2	149
58	Liberating Active Metals from Reducible Oxide Encapsulation for Superior Hydrogenation Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 7071-7080.	4.0	12
59	Molten salt assisted pyrolysis approach for the synthesis of nitrogen-rich microporous carbon nanosheets and its application as gas capture sorbent. Microporous and Mesoporous Materials, 2020, 300, 110177.	2.2	12
60	A Sulfurâ€Fixing Strategy toward Carbon‣upported Ruâ€Based Bimetallic Nanocluster Catalysts. ChemNanoMat, 2020, 6, 969-975.	1.5	8
61	Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID. Analytica Chimica Acta, 2020, 1111, 31-39.	2.6	11
62	Mild-condition synthesis of A2ZnH4 (AÂ=ÂK, Rb, Cs) and their effects on the hydrogen storage properties of 2LiH-Mg(NH2)2. Journal of Energy Chemistry, 2020, 50, 358-364.	7.1	9
63	High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor. Chemical Engineering Journal, 2020, 388, 124245.	6.6	39
64	Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	1
65	Advances in the Chemical Looping Ammonia Synthesis. Acta Chimica Sinica, 2020, 78, 916.	0.5	11
66	Kinetic studies of reversible hydrogen storage over sodium phenoxide-cyclohexanolate pair in aqueous solution. Journal of Energy Chemistry, 2019, 39, 244-248.	7.1	4
67	Enhancement Effect of Bimetallic Amide K2Mn(NH2)4 and In-Situ Formed KH and Mn4N on the Dehydrogenation/Hydrogenation Properties of Li–Mg–N–H System. Energies, 2019, 12, 2779.	1.6	9
68	Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials, 2019, 31, e1902757.	11.1	130
69	Electrocatalyst Derived from Abundant Biomass and its Excellent Activity for In Situ H ₂ O ₂ Production. ChemElectroChem, 2019, 6, 4877-4884.	1.7	14
70	A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Science Advances, 2019, 5, eaax6322.	4.7	177
71	One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. Journal of Materials Chemistry A, 2019, 7, 21329-21337.	5.2	53
72	Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 2019, 36, 25-36.	7.1	202

#	Article	IF	CITATIONS
73	Highly Efficient Ru/MgO Catalyst with Surfaceâ€Enriched Basic Sites for Production of Hydrogen from Ammonia Decomposition. ChemCatChem, 2019, 11, 4161-4170.	1.8	63
74	Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte Chemie, 2019, 131, 3134-3139.	1.6	6
75	Ternary amide-hydride system: A study on LiAl(NH2)4-LiAlH4 interaction. Journal of Alloys and Compounds, 2019, 790, 597-601.	2.8	5
76	Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition. Chinese Journal of Chemistry, 2019, 37, 442-451.	2.6	32
77	Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides. ChemPhysChem, 2019, 20, 1376-1381.	1.0	8
78	Rücktitelbild: Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair (Angew. Chem. 10/2019). Angewandte Chemie, 2019, 131, 3262-3262.	1.6	0
79	Highly Hydrophilic Carbon Dots' Decoration on NiCo ₂ O ₄ Nanowires for Greatly Increased Electric Conductivity, Supercapacitance, and Energy Density. Advanced Materials Interfaces, 2019, 6, 1900049.	1.9	14
80	Nonlinear Optical Properties of Fewâ€Layer Rhenium Disulfide Nanosheets and Their Passively Qâ€switched Laser Application. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800837.	0.8	15
81	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 2019, 44, 7746-7767.	3.8	166
82	Water enables an asymmetric cross reaction of α-keto acids with α-keto esters for the synthesis of quaternary isotetronic acids. Chemical Communications, 2019, 55, 12813-12816.	2.2	8
83	Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte Chemie - International Edition, 2019, 58, 3102-3107.	7.2	23
84	Recent progress in heterogeneous ammonia synthesis. Chinese Science Bulletin, 2019, 64, 1114-1128.	0.4	10
85	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	4.0	147
86	Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Advanced Composites and Hybrid Materials, 2018, 1, 397-403.	9.9	8
87	Bioconcentration of organic dyes <i>via</i> fungal hyphae and their derived carbon fibers for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10710-10717.	5.2	54
88	Molten salt assisted synthesis of microporous polyaniline nanosheets with superior gas sorption properties. Microporous and Mesoporous Materials, 2018, 267, 100-106.	2.2	8
89	Controllable Photoluminescent and Nonlinear Optical Properties of Polymerizable Carbon Dots and Their Arbitrary Copolymerized Gel Glasses. Advanced Optical Materials, 2018, 6, 1701273.	3.6	29
90	Metathesis of Mg ₂ FeH ₆ and LiNH ₂ leading to hydrogen production at low temperatures. Physical Chemistry Chemical Physics, 2018, 20, 9833-9837.	1.3	9

#	Article	IF	CITATIONS
91	Li ₂ NHâ€LiBH ₄ : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction. Chemistry - A European Journal, 2018, 24, 1342-1347.	1.7	16
92	Bulk Production of Nonâ€Precious Metal Catalysts with High Surface Area and Excellent Activity in the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1854-1861.	1.7	6
93	Alkali and Alkaline Earth Hydrides-Driven N ₂ Activation and Transformation over Mn Nitride Catalyst. Journal of the American Chemical Society, 2018, 140, 14799-14806.	6.6	81
94	Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nature Energy, 2018, 3, 1067-1075.	19.8	207
95	Across the Board: Ping Chen. ChemSusChem, 2018, 11, 2469-2471.	3.6	10
96	Bayberry tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal of uranyl ions from radioactive wastewater. Journal of Materials Chemistry A, 2018, 6, 15359-15370.	5.2	74
97	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	2.7	34
98	Microporous Crystalline γâ€Al ₂ O ₃ Replicated from Microporous Covalent Triazine Framework and Its Application as Support for Catalytic Hydrolysis of Ammonia Borane. Chemistry - an Asian Journal, 2017, 12, 470-475.	1.7	10
99	Room temperature synthesis of reduced TiO ₂ and its application as a support for catalytic hydrogenation. RSC Advances, 2017, 7, 4306-4311.	1.7	19
100	Near Ambient Condition Hydrogen Storage in a Synergized Tricomponent Hydride System. Advanced Energy Materials, 2017, 7, 1602456.	10.2	33
101	Effects of doping FeCl 3 on hydrogen storage properties of Li-N-H system. Progress in Natural Science: Materials International, 2017, 27, 139-143.	1.8	13
102	Enantioselective Reactions of 2-Sulfonylalkyl Phenols with Allenic Esters: Dynamic Kinetic Resolution and [4+2] Cycloaddition Involving ortho -Quinone Methide Intermediates. Angewandte Chemie, 2017, 129, 3743-3747.	1.6	25
103	Enantioselective Reactions of 2â€Sulfonylalkyl Phenols with Allenic Esters: Dynamic Kinetic Resolution and [4+2] Cycloaddition Involving <i>ortho</i> â€Quinone Methide Intermediates. Angewandte Chemie - International Edition, 2017, 56, 3689-3693.	7.2	100
104	The effect of Sr(OH) ₂ on the hydrogen storage properties of the Mg(NH ₂) ₂ –2LiH system. Physical Chemistry Chemical Physics, 2017, 19, 8457-8464.	1.3	18
105	Effects of Stoichiometry on the H ₂ ‣torage Properties of Mg(NH ₂) ₂ –LiH–LiBH ₄ Triâ€Component Systems. Chemistry - an Asian Journal, 2017, 12, 1758-1764.	ו 1.7	12
106	Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Applied Catalysis B: Environmental, 2017, 211, 167-175.	10.8	143
107	Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt. ACS Catalysis, 2017, 7, 3654-3661.	5.5	136
108	Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition. Chemistry - A European Journal, 2017, 23, 9766-9771.	1.7	28

#	Article	IF	CITATIONS
109	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie, 2017, 129, 8842-8846.	1.6	16
110	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie - International Edition, 2017, 56, 8716-8720.	7.2	58
111	High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots. Journal of Materials Chemistry C, 2017, 5, 9629-9637.	2.7	62
112	Atomically Dispersed Pt on the Surface of Ni Particles: Synthesis and Catalytic Function in Hydrogen Generation from Aqueous Ammonia–Borane. ACS Catalysis, 2017, 7, 6762-6769.	5.5	169
113	Enhanced room-temperature ferromagnetic properties in ultrathin two-dimensional metal-free poly(triazine imide) nanosheets. Carbon, 2017, 124, 486-491.	5.4	5
114	Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9, 64-70.	6.6	451
115	Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chemical Science, 2017, 8, 781-788.	3.7	180
116	Influence of alkali metal amides on the catalytic activity of manganese nitride for ammonia decomposition. Catalysis Today, 2017, 286, 141-146.	2.2	23
117	Kinetic alteration of the 6Mg(NH ₂) ₂ –9LiH–LiBH ₄ system by co-adding YCl ₃ and Li ₃ N. Physical Chemistry Chemical Physics, 2017, 19, 32105-32115.	1.3	10
118	Catalyst: NH3 as an Energy Carrier. CheM, 2017, 3, 709-712.	5.8	361
119	Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems. Catalysts, 2017, 7, 373.	1.6	48
120	Synthesis of Twoâ€dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as Highâ€performance CO ₂ Capture Sorbent. Chemistry - an Asian Journal, 2016, 11, 1849-1855.	1.7	11
121	Ammonium Aminodiboranate: A Longâ€Sought Isomer of Diammoniate of Diborane and Ammonia Borane Dimer. Chemistry - A European Journal, 2016, 22, 7727-7729.	1.7	15
122	Ammonia Decomposition with Manganese Nitride–Calcium Imide Composites as Efficient Catalysts. ChemSusChem, 2016, 9, 364-369.	3.6	28
123	Effects of Alkaline Earth Metal Amides on Ru in Catalytic Ammonia Decomposition. Journal of Physical Chemistry C, 2016, 120, 2822-2828.	1.5	45
124	N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2016, 4, 8602-8609.	5.2	112
125	An improved synthesis of unsolvated NaB 3 H 8 and its application in preparing Na 2 B 12 H 12. International Journal of Hydrogen Energy, 2016, 41, 15471-15476.	3.8	19
126	Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs. ACS Applied Materials & Interfaces, 2016, 8, 9961-9968.	4.0	88

#	Article	IF	CITATIONS
127	Bulk Production of Nonprecious Metal Catalysts from Cheap Starch as Precursor and Their Excellent Electrochemical Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 3235-3244.	3.2	22
128	Solid Hydrogen Storage Materials: Non-interstitial Hydrides. Green Energy and Technology, 2016, , 207-239.	0.4	0
129	Single-Layered and Single-Crystalline Graphene Quantum Dots from 2D Polycyclic Compounds. Particle and Particle Systems Characterization, 2016, 33, 811-817.	1.2	9
130	N-, Fe-Doped carbon sphere/oriented carbon nanofiber nanocomposite with synergistically enhanced electrochemical activities. RSC Advances, 2016, 6, 92739-92747.	1.7	1
131	High-Pressure Photon Ionization Source for TOFMS and Its Application for Online Breath Analysis. Analytical Chemistry, 2016, 88, 9047-9055.	3.2	54
132	C ₉₆ H ₃₀ tailored single-layer and single-crystalline graphene quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 25002-25009.	1.3	17
133	The interactions of Li3FeN2 with H2 and NH3. International Journal of Hydrogen Energy, 2016, 41, 14171-14177.	3.8	8
134	Hydrogen carriers. Nature Reviews Materials, 2016, 1, .	23.3	602
135	Enantiomeric Catalytic Formal Thiolation of 2,5â€Ðimethylâ€3â€{1â€{arylsulfonyl)alkyl]pyrroles in an Oil/Water Biphasic System. European Journal of Organic Chemistry, 2016, 2016, 5826-5830.	1.2	5
136	Thermal decomposition of sodium amide, NaNH ₂ , and sodium amide hydroxide composites, NaNH ₂ –NaOH. Physical Chemistry Chemical Physics, 2016, 18, 25257-25264.	1.3	17
137	Photoionization-Generated Dibromomethane Cation Chemical Ionization Source for Time-of-Flight Mass Spectrometry and Its Application on Sensitive Detection of Volatile Sulfur Compounds. Analytical Chemistry, 2016, 88, 5028-5032.	3.2	36
138	Synthesis and decomposition of Li ₃ Na(NH ₂) ₄ and investigations of Li–Na–Nâê"H based systems for hydrogen storage. Physical Chemistry Chemical Physics, 2016, 18, 1735-1742.	1.3	10
139	In situ bifunctionalized carbon dots with boronic acid and amino groups for ultrasensitive dopamine detection. Analytical Methods, 2016, 8, 3236-3241.	1.3	43
140	Hydrogen-based Energy Storage (IEA-HIA Task 32). Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	4
141	New synthesis route for ternary transition metal amides as well as ultrafast amide–hydride hydrogen storage materials. Chemical Communications, 2016, 52, 5100-5103.	2.2	18
142	Synthesis, structure and the dehydrogenation mechanism of calcium amidoborane hydrazinates. Physical Chemistry Chemical Physics, 2016, 18, 244-251.	1.3	7
143	Complex and liquid hydrides for energy storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	81
144	Melamine assisted solid exfoliation approach for the synthesis of few-layered fluorinated graphene nanosheets. Materials Letters, 2016, 171, 191-194.	1.3	26

Ping Chen

#	Article	IF	CITATIONS
145	Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser. Molecular Physics, 2016, 114, 855-861.	0.8	0
146	A highly enantioselective thiolation of sulfonyl indoles to access 3-sec-sulfur-substituted indoles in water. Chemical Communications, 2016, 52, 96-99.	2.2	21
147	Rapid Identification and Quantification of Linear Olefin Isomers by Online Ozonolysis-Single Photon Ionization Time-of-Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 144-152.	1.2	11
148	Liquid organic hydrogen carriers. Journal of Energy Chemistry, 2015, 24, 587-594.	7.1	167
149	Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates. ChemSusChem, 2015, 8, 3777-3782.	3.6	13
150	Layerâ€byâ€layer assembly of {chitosan/Pd} _n multilayer film based on <i>inâ€situ</i> photochemical reduction with excellent electrocatalytic properties. Surface and Interface Analysis, 2015, 47, 1114-1119.	0.8	2
151	Lithium Imide Synergy with 3d Transitionâ€Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angewandte Chemie, 2015, 127, 2993-2997.	1.6	18
152	The improved Hydrogen Storage Performances of the Multi-Component Composite: 2Mg(NH2)2–3LiH–LiBH4. Energies, 2015, 8, 6898-6909.	1.6	19
153	DNA Hydrogels: A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multiâ€modification Sites (Small 9â€10/2015). Small, 2015, 11, 1224-1224.	5.2	0
154	New synthetic procedure for NaNH2(BH3)2 and evaluation of its hydrogen storage properties. Science China Chemistry, 2015, 58, 169-173.	4.2	8
155	BiOBr three-dimensional micromaterials in a solvothermal system and their photocatalytical property under visible-light irradiation. Journal of Experimental Nanoscience, 2015, 10, 564-575.	1.3	6
156	Lithium Imide Synergy with 3d Transitionâ€Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angewandte Chemie - International Edition, 2015, 54, 2950-2954.	7.2	76
157	CMK3/graphene-N-Co – a low-cost and high-performance catalytic system. Journal of Materials Chemistry A, 2015, 3, 2978-2984.	5.2	22
158	The synthesis, structure and dehydrogenation of calcium borohydride hydrazinates. International Journal of Hydrogen Energy, 2015, 40, 5333-5339.	3.8	5
159	A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. Journal of Materials Chemistry A, 2015, 3, 17866-17873.	5.2	20
160	Covalent triazine framework-supported palladium nanoparticles for catalytic hydrogenation of N-heterocycles. Journal of Materials Chemistry A, 2015, 3, 16235-16241.	5.2	69
161	The effect of NH3 content on hydrogen release from LiBH4–NH3 system. International Journal of Hydrogen Energy, 2015, 40, 4573-4578	3.8	8
162	Lithium amidoborane hydrazinates: synthesis, structure and hydrogen storage properties. Journal of Materials Chemistry A, 2015, 3, 10100-10106.	5.2	10

#	Article	IF	CITATIONS
163	Guanidinium octahydrotriborate: an ionic liquid with high hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 11411-11416.	5.2	25
164	Highly Active MnN–Li ₂ NH Composite Catalyst for Producing CO _{<i>x</i>} -Free Hydrogen. ACS Catalysis, 2015, 5, 2708-2713.	5.5	53
165	In situ formation of N- and Fe-doped carbon nanotube/mesoporous carbon nanocomposite with excellent activity for oxygen reduction in acidic media. RSC Advances, 2015, 5, 76599-76606.	1.7	5
166	Electronic promoter or reacting species? The role of LiNH ₂ on Ru in catalyzing NH ₃ decomposition. Chemical Communications, 2015, 51, 15161-15164.	2.2	42
167	Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Advances, 2015, 5, 3605-3610.	1.7	31
168	Synthesis, structures and dehydrogenation of magnesium borohydride–ethylenediamine composites. International Journal of Hydrogen Energy, 2015, 40, 412-419.	3.8	28
169	Synthesis and hydrogen storage properties of lithium borohydride urea complex. International Journal of Hydrogen Energy, 2015, 40, 429-434.	3.8	15
170	Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO ₂ nanobelts for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1540-1548.	5.2	97
171	Ammonia borane assisted solid exfoliation of graphite fluoride for facile preparation of fluorinated graphene nanosheets. Carbon, 2015, 81, 702-709.	5.4	26
172	Bioinspired synthesis of novel teethâ€like hierarchical architecture polyaniline/lead tungstate nanocomposites with photoluminescence property. Polymer Composites, 2014, 35, 516-522.	2.3	3
173	Lithiated Primary Amine—A New Material for Hydrogen Storage. Chemistry - A European Journal, 2014, 20, 6632-6635.	1.7	15
174	A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	23
175	The enhanced hydrogen storage performance ofÂ(Mg–B–N–H)-doped Mg(NH2)–2LiH system. International Journal of Hydrogen Energy, 2014, 39, 1710-1718.	3.8	19
176	A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. Journal of Materials Chemistry C, 2014, 2, 916-924.	2.7	29
177	Synthesis, Thermal Behavior, and Dehydrogenation Kinetics Study of Lithiated Ethylenediamine. Chemistry - A European Journal, 2014, 20, 13636-13643.	1.7	13
178	Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 4095-4103.	15.6	537
179	Alkali Metal Hydride Modification on Hydrazine Borane for Improved Dehydrogenation. Journal of Physical Chemistry C, 2014, 118, 11244-11251.	1.5	28
180	Effective thermodynamic alteration to Mg(NH ₂) ₂ –LiH system: achieving near ambient-temperature hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 15816-15822.	5.2	37

#	Article	IF	CITATIONS
181	Improved kinetics of the Mg(NH ₂) ₂ –2LiH system by addition of lithium halides. RSC Advances, 2014, 4, 32555.	1.7	25
182	Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites. Journal of Energy Chemistry, 2014, 23, 414-419.	7.1	8
183	Quasi-Trapping Chemical Ionization Source Based on a Commercial VUV Lamp for Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2014, 86, 1332-1336.	3.2	18
184	Long-Term Real-Time Monitoring Catalytic Synthesis of Ammonia in a Microreactor by VUV-Lamp-Based Charge-Transfer Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2014, 86, 7681-7687.	3.2	23
185	NH ₃ Mediated or Ion Migration Reaction: The Case Study on Halide–Amide System. Journal of Physical Chemistry C, 2014, 118, 2344-2349.	1.5	25
186	Lithium Borohydride Ethylenediaminates: A Case Study of Solid-State LiBH ₄ –Organic Amine Complexes. Journal of Physical Chemistry C, 2014, 118, 13451-13459.	1.5	8
187	Microwave absorbing properties of Fe ₃ O ₄ –poly(3, 4â€ethylenedioxythiophene) hybrids in lowâ€frequency band. Polymers for Advanced Technologies, 2014, 25, 83-88.	1.6	30
188	Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chemical Communications, 2013, 49, 7890.	2.2	74
189	Tuning PANI nanostructure by driving force for diverse capacitance performance. RSC Advances, 2013, 3, 21315.	1.7	13
190	Effects of Al-based additives on the hydrogen storage performance of the Mg(NH2)2–2LiH system. Dalton Transactions, 2013, 42, 5524.	1.6	27
191	Synthesis and hydrogen storage properties of lithium borohydride amidoborane complex. International Journal of Hydrogen Energy, 2013, 38, 10944-10949.	3.8	11
192	Releasing 9.6Âwt% of H2 from Mg(NH2)2–3LiH–NH3BH3 through mechanochemical reaction. International Journal of Hydrogen Energy, 2013, 38, 10446-10452.	3.8	8
193	Effects of graphitic carbon nitride on the dehydrogenation of ammonia borane. Chinese Journal of Catalysis, 2013, 34, 1303-1311.	6.9	4
194	Alkali and alkaline-earth metal borohydride hydrazinates: synthesis, structures and dehydrogenation. Physical Chemistry Chemical Physics, 2013, 15, 10487.	1.3	26
195	Lithium borohydride–melamine complex as a promising material for chemical hydrogen storage. Journal of Alloys and Compounds, 2013, 552, 98-101.	2.8	6
196	Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements. MRS Bulletin, 2013, 38, 480-487.	1.7	47
197	Solid–Solid Heterogeneous Catalysis: The Role of Potassium in Promoting the Dehydrogenation of the Mg(NH ₂) ₂ /2 LiH Composite. ChemSusChem, 2013, 6, 2181-2189. 	3.6	27
198	Solid Exfoliation of Hexagonal Boron Nitride Crystals for the Synthesis of Few-layer Boron Nitride Nanosheets. Chemistry Letters, 2013, 42, 1415-1416.	0.7	20

#	Article	IF	CITATIONS
199	Materials design and modification on amide-based composites for hydrogen storage. Progress in Natural Science: Materials International, 2012, 22, 550-560.	1.8	39
200	Calcium amidoborane, a new reagent for chemoselective reduction of α,β-unsaturated aldehydes and ketones to allylic alcohols. RSC Advances, 2012, 2, 6005.	1.7	14
201	Comparative study on reducing aromatic aldehydes by using ammonia borane and lithium amidoborane as reducing reagents. New Journal of Chemistry, 2012, 36, 1496.	1.4	39
202	Dehydrogenation Mechanism of Monoammoniated Lithium Amidoborane [Li(NH3)NH2BH3]. Journal of Physical Chemistry C, 2012, 116, 8859-8864.	1.5	11
203	Lithium amidoborane, a highly chemoselective reagent for the reduction of α,β-unsaturated ketones to allylic alcohols. Organic and Biomolecular Chemistry, 2012, 10, 367-371.	1.5	20
204	Monoammoniate of Calcium Amidoborane: Synthesis, Structure, and Hydrogen-Storage Properties. Inorganic Chemistry, 2012, 51, 1599-1603.	1.9	33
205	Role of NH ₃ in the Dehydrogenation of Calcium Amidoborane Ammoniate and Magnesium Amidoborane Ammoniate: A First-Principles Study. Inorganic Chemistry, 2012, 51, 76-87.	1.9	14
206	Li–Na ternary amidoborane for hydrogen storage: experimental and first-principles study. Dalton Transactions, 2012, 41, 4754.	1.6	18
207	Metal Amidoboranes: Superior Doubleâ€Hydrogenâ€Transfer Agents in the Reduction of Ketones and Imines. Chemistry - A European Journal, 2012, 18, 13885-13892.	1.7	22
208	Li ⁺ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. Physical Chemistry Chemical Physics, 2012, 14, 1596-1606.	1.3	43
209	Metathesis of alkali-metal amidoborane and FeCl3 in THF. Journal of Materials Chemistry, 2012, 22, 7478.	6.7	11
210	Enhanced hydrogen desorption from the Co-catalyzed LiBH4–Mg(BH4)2 eutectic composite. International Journal of Hydrogen Energy, 2012, 37, 12425-12431.	3.8	35
211	Borohydride hydrazinates: high hydrogen content materials for hydrogenstorage. Energy and Environmental Science, 2012, 5, 5686-5689.	15.6	68
212	From Exothermic to Endothermic Dehydrogenation – Interaction of Monoammoniate of Magnesium Amidoborane and Metal Hydrides. Chemistry of Materials, 2012, 24, 3574-3581.	3.2	33
213	Theoretical Studies on Dehydrogenation Reactions in Mg2(BH4)2(NH2)2 Compounds. Chinese Journal of Chemical Physics, 2012, 25, 676-680.	0.6	8
214	Reductive Amination of Aldehydes and Ketones with Primary Amines by Using Lithium Amidoborane as Reducing Reagent. Chinese Journal of Chemistry, 2012, 30, 1775-1780.	2.6	3
215	Mechanistic Investigation on the Formation and Dehydrogenation of Calcium Amidoborane Ammoniate. ChemSusChem, 2012, 5, 927-931.	3.6	10
216	Synthesis and dehydrogenation of LiCa(NH2)3(BH3)2. International Journal of Hydrogen Energy, 2012, 37, 9076-9081.	3.8	7

#	Article	IF	CITATIONS
217	Controlled fabrication of highly conductive three-dimensional flowerlike poly (3,4-ethylenedioxythiophene) nanostructures. Journal of Materials Chemistry, 2011, 21, 7123.	6.7	31
218	Improving Effects of LiH and Co-Catalyst on the Dehydrogenation of Li ₄ BN ₃ H ₁₀ . Journal of Physical Chemistry C, 2011, 115, 8840-8844.	1.5	19
219	Single Photon Ionization and Chemical Ionization Combined Ion Source Based on a Vacuum Ultraviolet Lamp for Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2011, 83, 5309-5316.	3.2	73
220	Improved Dehydrogenation Properties of Calcium Borohydride Combined with Alkaline-Earth Metal Amides. Journal of Physical Chemistry C, 2011, 115, 18035-18041.	1.5	25
221	Development of amidoboranes for hydrogen storage. Chemical Communications, 2011, 47, 5116.	2.2	142
222	Releasing 17.8 wt% H2 from lithium borohydride ammoniate. Energy and Environmental Science, 2011, 4, 3593.	15.6	74
223	Improved hydrogen desorption properties of Co-doped Li2BNH6. Science Bulletin, 2011, 56, 2481-2485.	1.7	7
224	Synthesis and microwave absorbing properties of poly(3,4â€ethylenedioxythiophene) (PEDOT) microspheres. Polymers for Advanced Technologies, 2011, 22, 532-537.	1.6	36
225	Hydrogen Sorption from the Mg(NH ₂) ₂ â€KH System and Synthesis of an Amide–Imide Complex of KMg(NH)(NH ₂). ChemSusChem, 2011, 4, 1622-1628.	3.6	35
226	Quasi in situ Mössbauer and XAS studies on FeB nanoalloy for heterogeneous catalytic dehydrogenation of ammonia borane. Catalysis Today, 2011, 170, 69-75.	2.2	18
227	High-capacity hydrogen storage in lithium and sodium amidoboranes. , 2010, , 276-279.		0
228	Hydrogen Storage Properties of Ca(BH ₄) ₂ –LiNH ₂ System. Chemistry - an Asian Journal, 2010, 5, 1594-1599.	1.7	34
229	Investigations on the solid state interaction between LiAlH4 and NaNH2. Journal of Solid State Chemistry, 2010, 183, 2040-2044.	1.4	18
230	Growth of Crystalline Polyaminoborane through Catalytic Dehydrogenation of Ammonia Borane on FeB Nanoalloy. Chemistry - A European Journal, 2010, 16, 12814-12817.	1.7	40
231	Hydrogen storage properties of Li–Ca–N–H system with different molar ratios of LiNH2/CaH2. International Journal of Hydrogen Energy, 2010, 35, 8317-8321.	3.8	30
232	Hydrogen as promoter and inhibitor of superionicity: A case study on Li-N-H systems. Physical Review B, 2010, 82, .	1.1	12
233	Synthesis, structure and dehydrogenation of magnesium amidoborane monoammoniate. Chemical Communications, 2010, 46, 5752.	2.2	65
234	Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate. Chemistry of Materials, 2010, 22, 6021-6028.	3.2	91

#	Article	IF	CITATIONS
235	Stepwise Phase Transition in the Formation of Lithium Amidoborane. Inorganic Chemistry, 2010, 49, 4319-4323.	1.9	51
236	Understanding from First-Principles Why LiNH2BH3·NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095.	1.5	27
237	LiNH2BH3·NH3BH3: Structure and Hydrogen Storage Properties. Chemistry of Materials, 2010, 22, 3-5.	3.2	76
238	Improved dehydrogenation properties of Ca(BH4)2-LiNH2 combined system. Dalton Transactions, 2010, 39, 10585.	1.6	32
239	Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy and Environmental Science, 2010, 3, 1524.	15.6	149
240	Interaction of ammonia borane with Li2NH and Li3N. Dalton Transactions, 2010, 39, 720-722.	1.6	18
241	Superionicity in the hydrogen storage material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Li</mml:mtext></mml:mrow><mml:mn>2< Molecular dynamics simulations, Physical Review B, 2009, 79</mml:mn></mml:msub></mml:mrow></mml:math 	:/mml:mr	ı>< ? mml:msu
242	Potassiumâ€Modified Mg(NH ₂) ₂ /2 LiH System for Hydrogen Storage. Angewandto Chemie - International Edition, 2009, 48, 5828-5832.	² 7.2	181
243	Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage. Chemistry of Materials, 2009, 21, 2315-2318.	3.2	156
244	Calcium Amidoborane Ammoniate—Synthesis, Structure, and Hydrogen Storage Properties. Chemistry of Materials, 2009, 21, 4899-4904.	3.2	84
245	Effects of triphenyl phosphate on the hydrogen storage performance of the Mg(NH2)2–2LiH system. Journal of Materials Chemistry, 2009, 19, 2141.	6.7	30
246	Ambient temperature hydrogen desorption from LiAlH4–LiNH2 mediated by HMPA. Journal of Materials Chemistry, 2009, 19, 8426.	6.7	17
247	Recent progress in hydrogen storage. Materials Today, 2008, 11, 36-43.	8.3	471
248	Dehydrogenation of LiAlH4 in HMPA. International Journal of Hydrogen Energy, 2008, 33, 3346-3350.	3.8	17
249	High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials, 2008, 7, 138-141.	13.3	583
250	Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. Journal of Materials Chemistry, 2008, 18, 3909.	6.7	145
251	Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production. Energy and Environmental Science, 2008, 1, 360.	15.6	99
252	Interaction of lithium hydride and ammonia borane in THF. Chemical Communications, 2008, , 5595.	2.2	70

#	Article	IF	CITATIONS
253	Cobalt-catalyzed hydrogen desorption from the LiNH2–LiBH4 system. Dalton Transactions, 2008, , 2395.	1.6	56
254	Investigation on the Properties of the Mixture Consisting of Mg(NH2)2, LiH, and LiBH4 as a Hydrogen Storage Material. Chemistry of Materials, 2008, 20, 7089-7094.	3.2	43
255	Improvement of Hydrogen Storage Properties of the Li–Mg–N–H System by Addition of LiBH ₄ . Chemistry of Materials, 2008, 20, 4398-4402.	3.2	102
256	Formation and Equilibrium of Ammonia in the Mg(NH ₂) ₂ â^²2LiH Hydrogen Storage System. Journal of Physical Chemistry C, 2008, 112, 1293-1298.	1.5	26
257	Improvement of the hydrogen-storage performances of Li–Mg–N–H system. Journal of Materials Research, 2007, 22, 1339-1345.	1.2	39
258	Investigations on hydrogen desorption from the mixture of Mg(NH2)2 and CaH2. Journal of Alloys and Compounds, 2007, 432, 298-302.	2.8	28
259	Ca–Na–N–H system for reversible hydrogen storage. Journal of Alloys and Compounds, 2007, 441, 152-156.	2.8	30
260	Synthesis and Characterization of a New Ternary ImideLi2Ca(NH)2. Inorganic Chemistry, 2007, 46, 517-521.	1.9	42
261	Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the Liâ^'Mgâ^'Nâ^'H System. Journal of Physical Chemistry C, 2007, 111, 18439-18443.	1.5	85
262	Large Amount of Hydrogen Desorption from the Mixture of Mg(NH ₂) ₂ and LiAlH ₄ . Journal of Physical Chemistry C, 2007, 111, 19161-19164.	1.5	32
263	Metal–N–H systems for the hydrogen storage. Scripta Materialia, 2007, 56, 817-822.	2.6	90
264	Mechanistic Investigations on the Heterogeneous Solid-State Reaction of Magnesium Amides and Lithium Hydrides. Journal of Physical Chemistry B, 2006, 110, 14221-14225.	1.2	107
265	Hydrogen Release from Mg(NH2)2â~'MgH2through Mechanochemical Reaction. Journal of Physical Chemistry B, 2006, 110, 14688-14692.	1.2	103
266	Investigations on hydrogen storage over Li–Mg–N–H complex—the effect of compositional changes. Journal of Alloys and Compounds, 2006, 417, 190-194.	2.8	66
267	Effects of ball-milling conditions on dehydrogenation of Mg(NH2)2–MgH2. Journal of Power Sources, 2006, 159, 120-125.	4.0	41
268	Hydrogen absorption/desorption behaviors over a quaternary Mg–Ca–Li–N–H system. Journal of Power Sources, 2006, 159, 135-138.	4.0	22
269	Hydrogen releasing reaction between Mg(NH2)2 and CaH2. Journal of Power Sources, 2006, 159, 116-119.	4.0	33
270	Investigation on chemical reaction between LiAlH4 and LiNH2. Journal of Power Sources, 2006, 159, 167-170.	4.0	58

#	Article	IF	CITATIONS
271	Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2. European Journal of Inorganic Chemistry, 2006, 2006, 4368-4373.	1.0	22
272	Fabrication of Self-Assembled PEDOT/PSS-ZnO Nanocables with Diverse Inner Core Sizes Facilitated by Vacuum Conditions. Macromolecular Rapid Communications, 2006, 27, 356-360.	2.0	3
273	Structural and Optical Investigation of Copper Nanoparticle and Microfiber Produced by Using Carbon Nanotube as Templates. , 2006, , .		0
274	Hydrogen Absorption and Desorption in Mg—Na—N—H System ChemInform, 2005, 36, no.	0.1	0
275	Fabrication of PEDOT/PSS-ZnO nanowire by self-assembly method under vacuum condition. Science Bulletin, 2005, 50, 2288-2290.	1.7	2
276	Hydrogen absorption and desorption in Mg–Na–N–H system. Journal of Alloys and Compounds, 2005, 395, 209-212.	2.8	68
277	Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system. Journal of Alloys and Compounds, 2005, 398, 235-239.	2.8	249
278	Interaction between Lithium Amide and Lithium Hydride. Journal of Physical Chemistry B, 2003, 107, 10967-10970.	1.2	396
279	Investigations into the interaction between hydrogen and calcium nitride. Journal of Materials Chemistry, 2003, 13, 1676.	6.7	28
280	Interaction of hydrogen with metal nitrides and imides. Nature, 2002, 420, 302-304.	13.7	1,540
281	Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. Journal of Materials Chemistry, 2001, 11, 2378-2381.	6.7	364
282	Investigation of an optical limiting mechanism in multiwalled carbon nanotubes. Applied Optics, 2000, 39, 1998.	2.1	104
283	Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh–phosphine catalyst. Applied Catalysis A: General, 1999, 187, 213-224.	2.2	144
284	Synthesis and characterization of thermally crosslinked polyimide with second-order nonlinear optical chromophore. Science in China Series B: Chemistry, 1998, 41, 395-402.	0.8	3
285	Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas. Applied Catalysis A: General, 1998, 166, 343-350.	2.2	75
286	Structural and Optical Investigation of Copper Nanoparticle and Microfiber Produced by Using Carbon Nanotube as Templates. , 0, , .		0