David R Sibley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693905/publications.pdf

Version: 2024-02-01

101 papers 3,059 citations

218677 26 h-index 53 g-index

105 all docs

105 docs citations

105 times ranked 2794 citing authors

#	Article	IF	CITATIONS
1	Molecular biology of dopamine receptors. Trends in Pharmacological Sciences, 1992, 13, 61-69.	8.7	890
2	Molecular Cloning of a Novel G Proteinâ€Coupled Receptor Related to the Opiate Receptor Family. Journal of Neurochemistry, 1995, 64, 34-40.	3.9	216
3	Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Molecular Psychiatry, 2021, 26, 6704-6722.	7.9	139
4	High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nature Communications, 2019, 10, 4627.	12.8	128
5	Medication discovery for addiction: Translating the dopamine D3 receptor hypothesis. Biochemical Pharmacology, 2012, 84, 882-890.	4.4	116
6	The Role of Phosphorylation in D1 Dopamine Receptor Desensitization. Journal of Biological Chemistry, 2004, 279, 7999-8010.	3.4	94
7	G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor. Journal of Biological Chemistry, 2009, 284, 15038-15051.	3.4	83
8	Discovery and Characterization of a G Protein–Biased Agonist That Inhibits <i>β</i> Arrestin Recruitment to the D2 Dopamine Receptor. Molecular Pharmacology, 2014, 86, 96-105.	2.3	74
9	Localization of D ₂ dopamine receptors in vertebrate retinae with antiâ€peptide antibodies. Journal of Comparative Neurology, 1993, 331, 469-481.	1.6	72
10	[3H]7-OH-DPAT is capable of labeling dopamine D2 as well as D3 receptors. European Journal of Pharmacology, 1995, 272, R1-R3.	3.5	70
11	Zinc Allosterically Modulates Antagonist Binding to Cloned D ₁ and D ₂ Dopamine Receptors. Journal of Neurochemistry, 1997, 68, 1990-1997.	3.9	68
12	G Protein-coupled Receptor Kinase-2 Constitutively Regulates D2 Dopamine Receptor Expression and Signaling Independently of Receptor Phosphorylation. Journal of Biological Chemistry, 2009, 284, 34103-34115.	3.4	67
13	<i>N</i> -(3-Fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl)piperazine-1-yl)butyl)arylcarboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity. Journal of Medicinal Chemistry, 2011, 54, 3581-3594.	6.4	64
14	New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Molecular Psychiatry, 2020, 25, 2070-2085.	7.9	55
15	Identification of G Protein-Biased Agonists That Fail To Recruit \hat{I}^2 -Arrestin or Promote Internalization of the D1 Dopamine Receptor. ACS Chemical Neuroscience, 2015, 6, 681-692.	3.5	53
16	Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits., 1997, 26, 400-414.		52
17	Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Translational Psychiatry, 2021, 11, 59.	4.8	50
18	Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cellular Signalling, 2018, 41, 75-81.	3.6	46

#	Article	IF	CITATIONS
19	Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology, 2008, 54, $1051-1061$.	4.1	45
20	Synthesis and Pharmacological Characterization of Novel <i>trans</i> -Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D ₃ Receptor (D ₃ R). Journal of Medicinal Chemistry, 2017, 60, 1478-1494.	6.4	44
21	D2L, D2S, and D3 dopamine receptors stably transfected into NG108-15 cells couple to a voltage-dependent potassium current via distinct G protein mechanisms. Synapse, 1996, 24, 156-164.	1.2	39
22	Identification of Positive Allosteric Modulators of the D $<$ sub $>$ 1 $<$ /sub $>$ Dopamine Receptor That Act at Diverse Binding Sites. Molecular Pharmacology, 2018, 94, 1197-1209.	2.3	35
23	Pharmacological characterization of 2â€methoxyâ€ <i>N</i> à€propylnorapomorphine's interactions with D ₂ and D ₃ dopamine receptors. Synapse, 2009, 63, 462-475.	1.2	34
24	Structural basis for Na ⁺ -sensitivity in dopamine D2 and D3 receptors. Chemical Communications, 2015, 51, 8618-8621.	4.1	34
25	Novel Analogues of (<i>R</i>)-5-(Methylamino)-5,6-dihydro-4 <i>H</i> -imidazo[4,5,1- <i>ij</i>)quinolin-2(1 <i>H</i>)-one (Sumanirole) Provide Clues to Dopamine D ₂ /D ₃ Receptor Agonist Selectivity. lournal of Medicinal Chemistry. 2016. 59. 2973-2988.	6.4	33
26	Arrestin3 mediates D ₂ dopamine receptor internalization. Synapse, 2009, 63, 621-624.	1.2	32
27	A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Science Signaling, 2020, 13, .	3.6	31
28	Agonist-induced morphologic decrease in cellular d1A dopamine receptor staining. Synapse, 1997, 27, 313-321.	1.2	29
29	D2S, D2L, D3, and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 � mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse, 1999, 31, 108-118.	1.2	27
30	Discovery, Optimization, and Characterization of Novel D ₂ Dopamine Receptor Selective Antagonists. Journal of Medicinal Chemistry, 2014, 57, 3450-3463.	6.4	27
31	Measuring and Modeling the Spatiotemporal Profile of GABA at the Synapse. , 0, , 259-275.		24
32	Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. European Neuropsychopharmacology, 2015, 25, 1448-1461.	0.7	20
33	A Mechanism Linking Two Known Vulnerability Factors for Alcohol Abuse: Heightened Alcohol Stimulation and Low Striatal Dopamine D2 Receptors. Cell Reports, 2019, 29, 1147-1163.e5.	6.4	20
34	Dopamine D ₄ Receptor-Selective Compounds Reveal Structure–Activity Relationships that Engender Agonist Efficacy. Journal of Medicinal Chemistry, 2019, 62, 3722-3740.	6.4	20
35	The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors. PLoS Computational Biology, 2018, 14, e1005948.	3.2	19
36	The Dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Scientific Reports, 2020, 10, 2542.	3.3	17

#	Article	IF	Citations
37	The Dopamine D5 Receptor Is Involved in Working Memory. Frontiers in Pharmacology, 2017, 8, 666.	3.5	15
38	Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D ₃ Dopamine Receptor Agonist. Journal of Medicinal Chemistry, 2020, 63, 5526-5567.	6.4	15
39	Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Molecular Psychiatry, 2022, 27, 4144-4156.	7.9	15
40	Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D2 Dopamine Receptor. Frontiers in Synaptic Neuroscience, 2018, 10, 2.	2.5	14
41	Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D ₂ Dopamine Receptor. Molecular Pharmacology, 2021, 100, 372-387.	2.3	14
42	PNA-Based Multivalent Scaffolds Activate the Dopamine D ₂ Receptor. ACS Medicinal Chemistry Letters, 2015, 6, 425-429.	2.8	13
43	Evidence for a Stereoselective Mechanism for Bitopic Activity by Extended-Length Antagonists of the D ₃ Dopamine Receptor. ACS Chemical Neuroscience, 2020, 11, 3309-3320.	3.5	13
44	Dopamine D5 receptor-mediated decreases in mitochondrial reactive oxygen species production are cAMP and autophagy dependent. Hypertension Research, 2021, 44, 628-641.	2.7	13
45	Chemical Modification Strategies for Structure-Function Studies. , 0, , 125-141.		12
46	Yeast as a Model System for Studying Glucose Transport. , 0, , 19-36.		11
47	Families of Transporters and Their Classification. , 0, , 1-17.		10
48	Ligand with Two Modes of Interaction with the Dopamine D ₂ Receptor–An Induced-Fit Mechanism of Insurmountable Antagonism. ACS Chemical Neuroscience, 2020, 11, 3130-3143.	3.5	8
49	Novel Cryo-EM structures of the D1 dopamine receptor unlock its therapeutic potential. Signal Transduction and Targeted Therapy, 2021, 6, 205.	17.1	8
50	Dopamine D1-like receptors regulate the $\hat{l}\pm 1A$ -adrenergic receptor in human renal proximal tubule cells and D1-like dopamine receptor knockout mice. American Journal of Physiology - Renal Physiology, 2014, 307, F1238-F1248.	2.7	7
51	A new era of rationally designed antipsychotics. Nature, 2018, 555, 170-172.	27.8	7
52	Development of pyrimidone D1 dopamine receptor positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2021, 31, 127696.	2.2	6
53	Sorting nexinâ€25, a novel member of the dopamine receptor signalplex, upâ€regulates D 1 and D 2 dopamine receptor expression in HEK293 cells. FASEB Journal, 2007, 21, A423.	0.5	4
54	Time will tell. Reply to "Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al.―by Chen et al Molecular Psychiatry, 2022, 27, 1863-1865.	7.9	3

#	Article	IF	CITATIONS
55	Dopamine receptor interacting proteins: unraveling the receptor signalplex. FASEB Journal, 2008, 22, 726.3.	0.5	1
56	Characterization of the novel anti ancer therapeutic ONC201 and related analogs as non ompetitive antagonists of the D 2 dopamine receptor. FASEB Journal, 2018, 32, 827.10.	0.5	1
57	Positive Allosteric Modulators of the D 1 Dopamine Receptor Act at Diverse Binding Sites. FASEB Journal, 2018, 32, 827.8.	0.5	1
58	Methanethiosulfonate Reagent Accessibility Studies, Cysteine-Scanning Mutagenesis, Protein Overexpression, and Functional Reconstitution: A Strategy for Studying the Structure/Function Relationships within the Mitochondrial Citrate Transport Protein., 0,, 143-159.		0
59	Amperometric Recording of Amphetamine-Induced Dopamine Efflux. , 0, , 191-201.		0
60	Imaging Monoamine Transporters in the Brain., 0,, 239-257.		0
61	Peptide Mapping of Dopamine Transporter Ligand and Substrate Interaction Sites., 0,, 161-177.		0
62	Transgenic Mice in Monoamine Transporter Research. , 0, , 51-63.		0
63	Studies of Glial Glutamate Transporters in Hippocampal Microcultures. , 0, , 217-238.		0
64	Methods in Studying the Regulation and Trafficking of Transmembrane Transporters. , 0, , 111-123.		0
65	Mass Spectrometry of Membrane Transport Proteins. , 0, , 179-189.		0
66	Voltage Clamp and Fluorometric Techniques for Studying Glutamate Transporter Function. , 0, , 203-215.		0
67	Searching for Novel Genetic Variation in Neurotransmitter Transporters. , 0, , 65-87.		0
68	Neurotransmitter Transporters of Drosophila. , 0, , 37-50.		0
69	Optimization of ML321: a D ₂ dopamine receptorâ€selective antagonist for the treatment of neuropsychiatric disorders. FASEB Journal, 2021, 35, .	0.5	0
70	G proteinâ \in coupled receptor kinase 2 can enhance \hat{l}^2 â \in arrestin recruitment to the D $<$ sub $>$ 2 $<$ /sub $>$ dopamine receptor in the absence of receptor phosphorylation. FASEB Journal, 2021, 35, .	0.5	0
71	Development of a dopaminergic neurodegeneration assay using laser cytometry of Caenorhabditis elegans models of Parkinson's disease. FASEB Journal, 2021, 35, .	0.5	0
72	D5 dopamine receptor regulation of Cu/Zn SOD expression and activity in D5 receptor deficient mice. FASEB Journal, 2006, 20, A309.	0.5	0

#	Article	IF	CITATIONS
73	Reciprocal modulation of function between the D ⟨sub⟩1⟨ sub⟩ and D ⟨sub⟩2⟨ sub⟩ dopamine receptors and the Na ⟨sup⟩+⟨ sup⟩ K ⟨sup⟩+⟨ sup⟩ â€ATPase, a novel member of the dopamine receptor signalplex. FASEB Journal, 2007, 21, A423.	0.5	О
74	Characterization of sorting nexinâ€25, a D 1 and D 2 dopamine receptor interacting protein that regulates receptor expression and trafficking in HEK293 cells. FASEB Journal, 2009, 23, 942.1.	0.5	0
75	Alterations in D2 dopamine receptor internalization in the presence of the Na+/K+â€ATPase. FASEB Journal, 2009, 23, 938.5.	0.5	O
76	Lipid rafts and membrane cholesterol are involved in regulating D2 dopamine receptor signaling. FASEB Journal, 2010, 24, 584.1.	0.5	0
77	Buspirone is a potent antagonist at D 3 and D 4 Dopamine Receptors and attenuates the reinforcing effects of cocaine in a primate model. FASEB Journal, 2012, 26, 661.4.	0.5	0
78	Investigation of the D 1 $\hat{a}\in D$ 2 dopamine receptor heteromer reveals a complex signaling mechanism not limited to G q protein activation. FASEB Journal, 2013, 27, 881.1.	0.5	0
79	Identification of substituted benzazepines as functionally selective ligands of the D 1 dopamine receptor. FASEB Journal, 2013, 27, 655.3.	0.5	0
80	Identification of a novel, highly potent D3 dopamine receptorâ€selective agonist (662.8). FASEB Journal, 2014, 28, 662.8.	0.5	0
81	Identification of Structural Elements that Regulate Signaling Bias in D2-like Dopamine Receptors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY20-1.	0.0	0
82	Identification of residues in the fifth transmembrane-spanning domain of the D2-like dopamine receptors that engender signaling bias. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-119.	0.0	0
83	Investigating the Interactions of GRK2 with a Gâ€protein Signalingâ€Biased D 2 Dopamine Receptor. FASEB Journal, 2018, 32, 827.13.	0.5	0
84	Discovery and characterization of a novel series of D2 dopamine receptorâ€selective antagonists though iterative chemistry of a BET bromodomain inhibitor. FASEB Journal, 2018, 32, 827.1.	0.5	0
85	Identification and Characterization of ML321: A Novel and Selective D 2 Dopamine Receptor Antagonist with Predicted Atypical Antipsychotic Properties. FASEB Journal, 2018, 32, 827.5.	0.5	0
86	Evidence for a Stereoselective Mechanism of Action for Nonâ€competitive Antagonism of the D3 Dopamine Receptor by Extendedâ€Length Bitopic Ligands. FASEB Journal, 2018, 32, 827.12.	0.5	0
87	In vivo Behavioral Characterization of ML417, a Novel D 3 Dopamine Receptorâ€selective Agonist. FASEB Journal, 2018, 32, 827.4.	0.5	0
88	Identification of Residues in the Fifth Transmembraneâ€Spanning Domain of the D2â€like Dopamine Receptors that Engender Signaling Bias. FASEB Journal, 2018, 32, 827.11.	0.5	0
89	Characterization of a Novel Series of D4 Dopamine Receptor Ligands Reveals Structureâ€Activity Relationships for Selective Partial Agonists. FASEB Journal, 2018, 32, 827.6.	0.5	0
90	Novel Dopamine D4 Receptorâ€Selective Compounds Reveal Structureâ€Activity Relationships that Engender Agonist Efficacy. FASEB Journal, 2019, 33, lb40.	0.5	0

#	Article	IF	CITATIONS
91	G proteinâ€coupled receptor kinases can enhance betaâ€arrestin recruitment to the D 2 dopamine receptor in the absence of receptor phosphorylation. FASEB Journal, 2019, 33, 502.1.	0.5	O
92	Identification of an agonist binding site motif that regulates biased signaling of GPCRs through altered conformations of intracellular loop 2. FASEB Journal, 2019, 33, 503.4.	0.5	0
93	Comparative Pharmacology and Structure–Activity Relationships of D1 Dopamine Receptor Positive Allosteric Modulators. FASEB Journal, 2019, 33, 503.2.	0.5	O
94	Identification of a Novel Negative Allosteric Modulator of the D3 Dopamine Receptor. FASEB Journal, 2019, 33, 503.3.	0.5	0
95	Nonviral Gene Transfer Allows Up- and Down-Expression of the Brain Serotonin Transporter with Functional Consequences. , 0, , 89-110.		O
96	Establishing an RNA interference (RNAi) screen for neuroprotection of dopaminergic neurons in <i>Caenorhabditis elegans ⟨i⟩ models of Parkinson's disease. FASEB Journal, 2022, 36, .</i>	0.5	0
97	Characterization and Chemical Optimization of the D2 Dopamine Receptorâ€Selective Antagonist, ML321, Identifies Lead Compounds for the Clinical Treatment of Neuropsychiatric Disorders. FASEB Journal, 2022, 36, .	0.5	O
98	Pharmacological actions of a novel and highly selective D3 dopamine receptor agonist, ML417, in a rodent model of Parkinson's disease. FASEB Journal, 2022, 36, .	0.5	0
99	Structure–Activity Relationships of a Negative Allosteric Modulator of the D3 Dopamine Receptor and Investigation of its Binding Site. FASEB Journal, 2022, 36, .	0.5	O
100	G proteinâ€coupled receptor kinases regulate & amp; [beta]â€arrestin interactions with the D2 dopamine receptor in an isoformâ€specific manner and in the absence of direct receptor phosphorylation. FASEB Journal, 2022, 36, .	0.5	0
101	The show must go on. Reply to "Distinct functions of S-ketamine and R-ketamine in mediating biobehavioral processes of drug dependency: comments on Bonaventura et al―by Insop Shim. Molecular Psychiatry, 0, , .	7.9	O