Timo Dirk Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693891/publications.pdf

Version: 2024-02-01

55 papers

5,642 citations

33 h-index 58 g-index

60 all docs

60 does citations

60 times ranked

7877 citing authors

#	Article	IF	CITATIONS
1	Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 2022, 21, 201-223.	46.4	357
2	Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Frontiers in Endocrinology, 2022, 13, 838410.	3.5	42
3	Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. International Journal of Molecular Sciences, 2022, 23, 7418.	4.1	4
4	Plasma proteome profiles treatment efficacy of incretin dual agonism in dietâ€induced obese female and male mice. Diabetes, Obesity and Metabolism, 2021, 23, 195-207.	4.4	12
5	Inceptor counteracts insulin signalling in \hat{l}^2 -cells to control glycaemia. Nature, 2021, 590, 326-331.	27.8	55
6	Interaction of Full-Length Glycosylphosphatidylinositol-Anchored Proteins with Serum Proteins and Their Translocation to Cells In Vitro Depend on the (Pre-)Diabetic State in Rats and Humans. Biomedicines, 2021, 9, 277.	3.2	7
7	Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis. Molecular Metabolism, 2021, 45, 101147.	6.5	30
8	The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism, 2021, 33, 833-844.e5.	16.2	128
9	NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPAR \hat{I}^3 . Nature Communications, 2021, 12, 2876.	12.8	13
10	Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nature Communications, 2021 , 12 , 2999 .	12.8	22
11	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	16.2	68
12	Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism, 2021, 49, 101181.	6.5	39
13	Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nature Metabolism, 2021, 3, 1134-1136.	11.9	63
14	Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Molecular Metabolism, 2021, 53, 101295.	6.5	4
15	Chip-Based Sensing of the Intercellular Transfer of Cell Surface Proteins: Regulation by the Metabolic State. Biomedicines, 2021, 9, 1452.	3.2	4
16	Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mechanisms of Ageing and Development, 2020, 190, 111307.	4.6	9
17	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	12.8	21
18	Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Advanced Drug Delivery Reviews, 2020, 159, 34-53.	13.7	21

#	Article	IF	Citations
19	Pharmacological targeting of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9
20	Targeted pharmacological therapy restores \hat{l}^2 -cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	11.9	93
21	Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E462-E479.	3.5	14
22	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	8.2	17
23	Glucagon Regulation of Energy Expenditure. International Journal of Molecular Sciences, 2019, 20, 5407.	4.1	70
24	Plasma proteome profiling discovers novel proteins associated with nonâ€alcoholic fatty liver disease. Molecular Systems Biology, 2019, 15, e8793.	7.2	176
25	Teaching an old dog new tricks: metformin induces body-weight loss via GDF15. Nature Metabolism, 2019, 1, 1171-1172.	11.9	2
26	Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 90-104.	9.6	92
27	Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor. Cancer Cell, 2018, 33, 770-784.e6.	16.8	81
28	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	9.6	563
29	Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nature Communications, 2018, 9, 4304.	12.8	41
30	Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Molecular Metabolism, 2018, 16, 180-190.	6.5	41
31	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	28.9	218
32	Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Molecular Metabolism, 2017, 6, 440-446.	6.5	87
33	Emerging Polyâ€Agonists for Obesity and Type 2 Diabetes. Obesity, 2017, 25, 1647-1649.	3.0	7
34	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	16.2	66
35	Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metabolism, 2016, 24, 51-62.	16.2	198
36	Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine, 2016, 22, 359-376.	6.7	128

#	Article	IF	Citations
37	Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography–mass spectrometry method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 413-420.	2.3	19
38	Fibroblast activation protein (FAP) as a novel metabolic target. Molecular Metabolism, 2016, 5, 1015-1024.	6.5	56
39	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
40	Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Science Signaling, 2016, 9, ra43.	3.6	66
41	Dual melanocortinâ€4 receptor and GLP â€1 receptor agonism amplifies metabolic benefits in dietâ€induced obese mice. EMBO Molecular Medicine, 2015, 7, 288-298.	6.9	59
42	Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Molecular and Cellular Endocrinology, 2015, 418, 42-54.	3.2	69
43	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	30.7	481
44	GLP-1/Glucagon Coagonism Restores Leptin Responsiveness in Obese Mice Chronically Maintained on an Obesogenic Diet. Diabetes, 2014, 63, 1422-1427.	0.6	116
45	A Macrophage NBR1-MEKK3 Complex Triggers JNK-Mediated Adipose Tissue Inflammation in Obesity. Cell Metabolism, 2014, 20, 499-511.	16.2	36
46	The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor. Frontiers in Nutrition, 2014, 1, 31.	3.7	5
47	Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013, 5, 209ra151.	12.4	461
48	Ghrelin - A Key Pleiotropic Hormone-Regulating Systemic Energy Metabolism. Endocrine Development, 2013, 25, 91-100.	1.3	23
49	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	12.8	64
50	p62 Links \hat{l}^2 -adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	8.2	107
51	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	19.0	655
52	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	30.7	241
53	Restoration of leptin responsiveness in dietâ€induced obese mice using an optimized leptin analog in combination with exendinâ€4 or FGF21. Journal of Peptide Science, 2012, 18, 383-393.	1.4	133
54	Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. Journal of Psychiatric Research, 2011, 45, 706-711.	3.1	44

TIMO DIRK MüLLER

#	Article	lF	CITATIONS
55	Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2010, 1, 159-167.	7.3	46