Timo Dirk Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693891/publications.pdf Version: 2024-02-01

TIMO DIPK MÃ1/11 FP

#	Article	IF	CITATIONS
1	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	19.0	655
2	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	9.6	563
3	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	30.7	481
4	Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013, 5, 209ra151.	12.4	461
5	Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 2022, 21, 201-223.	46.4	357
6	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	30.7	241
7	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	28.9	218
8	Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metabolism, 2016, 24, 51-62.	16.2	198
9	Plasma proteome profiling discovers novel proteins associated with nonâ€alcoholic fatty liver disease. Molecular Systems Biology, 2019, 15, e8793.	7.2	176
10	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
11	Restoration of leptin responsiveness in dietâ€induced obese mice using an optimized leptin analog in combination with exendinâ€4 or FGF21. Journal of Peptide Science, 2012, 18, 383-393.	1.4	133
12	Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine, 2016, 22, 359-376.	6.7	128
13	The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism, 2021, 33, 833-844.e5.	16.2	128
14	GLP-1/Glucagon Coagonism Restores Leptin Responsiveness in Obese Mice Chronically Maintained on an Obesogenic Diet. Diabetes, 2014, 63, 1422-1427.	0.6	116
15	p62 Links Î ² -adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	8.2	107
16	Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	11.9	93
17	Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 90-104.	9.6	92
18	Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Molecular Metabolism, 2017, 6, 440-446.	6.5	87

TIMO DIRK MüLLER

#	Article	IF	CITATIONS
19	Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor. Cancer Cell, 2018, 33, 770-784.e6.	16.8	81
20	Glucagon Regulation of Energy Expenditure. International Journal of Molecular Sciences, 2019, 20, 5407.	4.1	70
21	Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Molecular and Cellular Endocrinology, 2015, 418, 42-54.	3.2	69
22	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	16.2	68
23	Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Science Signaling, 2016, 9, ra43.	3.6	66
24	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	16.2	66
25	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	12.8	64
26	Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nature Metabolism, 2021, 3, 1134-1136.	11.9	63
27	Dual melanocortinâ€4 receptor and GLP â€1 receptor agonism amplifies metabolic benefits in dietâ€induced obese mice. EMBO Molecular Medicine, 2015, 7, 288-298.	6.9	59
28	Fibroblast activation protein (FAP) as a novel metabolic target. Molecular Metabolism, 2016, 5, 1015-1024.	6.5	56
29	Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, 2021, 590, 326-331.	27.8	55
30	Chrelin and its potential in the treatment of eating/wasting disorders and cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2010, 1, 159-167.	7.3	46
31	Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. Journal of Psychiatric Research, 2011, 45, 706-711.	3.1	44
32	Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Frontiers in Endocrinology, 2022, 13, 838410.	3.5	42
33	Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nature Communications, 2018, 9, 4304.	12.8	41
34	Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Molecular Metabolism, 2018, 16, 180-190.	6.5	41
35	Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism, 2021, 49, 101181.	6.5	39
36	A Macrophage NBR1-MEKK3 Complex Triggers JNK-Mediated Adipose Tissue Inflammation in Obesity. Cell Metabolism, 2014, 20, 499-511.	16.2	36

Тімо Dirk Müller

#	Article	IF	CITATIONS
37	Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis. Molecular Metabolism, 2021, 45, 101147.	6.5	30
38	Ghrelin - A Key Pleiotropic Hormone-Regulating Systemic Energy Metabolism. Endocrine Development, 2013, 25, 91-100.	1.3	23
39	Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nature Communications, 2021, 12, 2999.	12.8	22
40	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	12.8	21
41	Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Advanced Drug Delivery Reviews, 2020, 159, 34-53.	13.7	21
42	Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography–mass spectrometry method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 413-420.	2.3	19
43	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	8.2	17
44	Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E462-E479.	3.5	14
45	NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPARÎ ³ . Nature Communications, 2021, 12, 2876.	12.8	13
46	Plasma proteome profiles treatment efficacy of incretin dual agonism in dietâ€induced obese female and male mice. Diabetes, Obesity and Metabolism, 2021, 23, 195-207.	4.4	12
47	Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mechanisms of Ageing and Development, 2020, 190, 111307.	4.6	9
48	Pharmacological targeting of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9
49	Emerging Polyâ€Agonists for Obesity and Type 2 Diabetes. Obesity, 2017, 25, 1647-1649.	3.0	7
50	Interaction of Full-Length Glycosylphosphatidylinositol-Anchored Proteins with Serum Proteins and Their Translocation to Cells In Vitro Depend on the (Pre-)Diabetic State in Rats and Humans. Biomedicines, 2021, 9, 277.	3.2	7
51	The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor. Frontiers in Nutrition, 2014, 1, 31.	3.7	5
52	Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Molecular Metabolism, 2021, 53, 101295.	6.5	4
53	Chip-Based Sensing of the Intercellular Transfer of Cell Surface Proteins: Regulation by the Metabolic State. Biomedicines, 2021, 9, 1452.	3.2	4
54	Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. International Journal of Molecular Sciences, 2022, 23, 7418.	4.1	4

#	Article	IF	CITATIONS
55	Teaching an old dog new tricks: metformin induces body-weight loss via GDF15. Nature Metabolism, 2019, 1, 1171-1172.	11.9	2