
Mengqiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693648/publications.pdf Version: 2024-02-01

MENCOLANC MU

#	Article	IF	CITATIONS
1	Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.	12.9	6
2	Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode. Chemical Engineering Journal, 2022, 433, 133193.	12.7	14
3	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Science Advances, 2022, 8, eabj7698.	10.3	37
4	Electrochemical deposition of ZnCo ₂ O ₄ /NiCo ₂ S ₄ nanosheet arrays for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 12686-12695.	2.8	6
5	Nanoparticles constructed mesoporous coral-like Mn2O3 as high performance anode for lithium-ion batteries. Ceramics International, 2022, 48, 26539-26545.	4.8	4
6	Organic–inorganic hybrid ferrocene/AC as cathodes for wide temperature range aqueous Zn-ion supercapacitors. RSC Advances, 2022, 12, 18466-18474.	3.6	3
7	Intelligent phase-transition MnO ₂ single-crystal shell enabling a high-capacity Li-rich layered cathode in Li-ion batteries. RSC Advances, 2021, 11, 12771-12783.	3.6	4
8	High stability gel electrolytes for long life lithium ion solid state supercapacitor. E3S Web of Conferences, 2021, 257, 01084.	0.5	0
9	Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high loading. Materials Advances, 2021, 2, 6885-6900.	5.4	3
10	Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 418, 129388.	12.7	27
11	MOF derived carbon with ultra-high specific surface area and pore volume for lithium-ion capacitor cathodes. IOP Conference Series: Earth and Environmental Science, 2021, 844, 012003.	0.3	0
12	A high specific surface area porous carbon skeleton derived from MOF for high-performance Lithium-ion capacitors. IOP Conference Series: Earth and Environmental Science, 2021, 844, 012002.	0.3	1
13	Bimetallic composite induced ultra-stable solid electrolyte interphase for dendrite-free lithium metal anode. Journal of Colloid and Interface Science, 2021, 599, 819-827.	9.4	15
14	High loading of NiFe active sites on a melamine formaldehyde carbon-based aerogel towards efficient bi-functional electrocatalysis for water splitting. Sustainable Energy and Fuels, 2021, 5, 4973-4980.	4.9	4
15	Activation-free N-doped porous carbon to enhance surface-driven K storage vs intercalation dominated Na storage. Applied Surface Science, 2020, 506, 144909.	6.1	13
16	Communication—Phosphate K(Mo ₂ PO ₆)(P ₂ O ₇) as a Novel Cathode Material for Potassium Ion Batteries: Structure and Electrochemical Properties. Journal of the Electrochemical Society, 2020, 167, 110517.	2.9	3
17	Pure-phase β-Mn ₂ V ₂ O ₇ interconnected nanospheres as a high-performance lithium ion battery anode. Chemical Communications, 2020, 56, 8043-8046.	4.1	10
18	Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. Journal of Power Sources, 2020, 471, 228455.	7.8	17

Mengqiang Wu

#	Article	IF	CITATIONS
19	SnO2 nano-crystals anchored on N-doped porous carbon with enhanced lithium storage properties. Applied Surface Science, 2020, 515, 145902.	6.1	26
20	Excellent Electrochemical Performance of Potassium Ion Capacitor Achieved by a High Nitrogen Doped Activated Carbon. Journal of the Electrochemical Society, 2020, 167, 050506.	2.9	17
21	Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphene doping for lithium and sodium ion batteries. Carbon, 2019, 142, 697-706.	10.3	76
22	Potassium Ion Storage: Direct Structure–Performance Comparison of All arbon Potassium and Sodium Ion Capacitors (Adv. Sci. 12/2019). Advanced Science, 2019, 6, 1970075.	11.2	3
23	Cellulose-Hydrogel-Derived Self-Activated Carbon/SnO ₂ Nanocomposites for High-Performance Lithium Storage. ACS Applied Energy Materials, 2019, 2, 5171-5182.	5.1	29
24	Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. Journal of Power Sources, 2019, 444, 227310.	7.8	50
25	Capacity Contribution Induced by Pseudo-Capacitance Adsorption Mechanism of Anode Carbonaceous Materials Applied in Potassium-ion Battery. Frontiers in Chemistry, 2019, 7, 640.	3.6	13
26	Optimized sulfur-loading in nitrogen-doped porous carbon for high-capacity cathode of lithium–sulfur batteries. Applied Surface Science, 2019, 487, 784-792.	6.1	29
27	Direct Structure–Performance Comparison of All arbon Potassium and Sodium Ion Capacitors. Advanced Science, 2019, 6, 1802272.	11.2	98
28	Hydrophilic binder interface interactions inducing inadhesion and capacity collapse in sodium-ion battery. Journal of Power Sources, 2019, 427, 62-69.	7.8	13
29	Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery. Electronic Materials Letters, 2019, 15, 428-436.	2.2	13
30	MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage. Nanoscale, 2019, 11, 10763-10773.	5.6	29
31	Efficient Trapping and Catalytic Conversion of Polysulfides by VS ₄ Nanosites for Li–S Batteries. ACS Energy Letters, 2019, 4, 755-762.	17.4	185
32	Chemically Modified Polyvinyl Butyral Polymer Membrane as a Gel Electrolyte for Lithium Ion Battery Applications. Macromolecular Materials and Engineering, 2019, 304, 1800477.	3.6	5
33	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.	16.0	190
34	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. Journal of Colloid and Interface Science, 2019, 538, 267-276.	9.4	63
35	Systematic comparison of hollow and solid Co 3 V 2 O 8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2018, 264, 358-366.	5.2	49
36	Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS ₂ Heterostructures for Energy Storage: Insights from Multiscale Modeling. ACS Applied Materials & Interfaces, 2018, 10, 14614-14621.	8.0	56

Mengqiang Wu

#	Article	IF	CITATIONS
37	Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review. Chemical Engineering Journal, 2018, 348, 908-928.	12.7	98
38	Investigation of the electrochemical performance of polyvinylidene fluoride-derived LiFePO4/C composite nanospheres. Journal of Materials Science, 2018, 53, 1279-1285.	3.7	13
39	Graphene Oxideâ€Template Controlled Cuboidâ€Shaped Highâ€Capacity VS ₄ Nanoparticles as Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801806.	14.9	125
40	Novel spherical cobalt/nickel mixed-vanadates as high-capacity anodes in lithium ion batteries. Journal of Alloys and Compounds, 2018, 766, 442-449.	5.5	33
41	Effect of ZrO2 Doping on the Microwave Dielectric Properties of Ba(Mg1/3Nb2/3)O3 Ceramics. Journal of Electronic Materials, 2017, 46, 2172-2178.	2.2	6
42	Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries. RSC Advances, 2017, 7, 48286-48293.	3.6	26
43	Graphene coated Co ₃ V ₂ O ₈ micro-pencils for enhanced-performance in lithium ion batteries. New Journal of Chemistry, 2017, 41, 10634-10639.	2.8	18
44	High Rate and Long Cycle Life of a CNT/rGO/Si Nanoparticle Composite Anode for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2017, 34, 1700141.	2.3	38
45	Effective thermal transport properties in multiphase biological systems containing carbon nanomaterials. RSC Advances, 2017, 7, 13615-13622.	3.6	18
46	Effect of La2O3 addition on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 3349-3355.	2.2	9
47	Microwave dielectric properties of Ba[Mg(1â°'x)/3Sn x Ta2(1â°'x)/3]O3 (xÂ=Â0–0.25) ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 174-179.	2.2	6
48	A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS2. Nanomaterials, 2017, 7, 420.	4.1	28
49	Enhanced Optical Performance of BaMgAl ₁₀ O ₁₇ :Eu ²⁺ Phosphor by a Novel Method of Carbon Coating. Journal of Physical Chemistry C, 2016, 120, 2355-2361.	3.1	51
50	Transparent pentacene organic thin film transistors with polyimide dielectrics. , 2014, , .		0
51	Some aspects affecting transmittance spectra of composite smart film WO/sub 3/. IEEE Transactions on Components and Packaging Technologies, 1999, 22, 17-20.	1.3	1