Frank Hauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269343/publications.pdf Version: 2024-02-01

FDANK HAUSED

#	Article	IF	CITATIONS
1	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
2	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
3	RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57, 231-245.	2.0	729
4	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	12.8	450
5	Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle <i>Tribolium castaneum</i> . Genome Research, 2008, 18, 113-122.	5.5	359
6	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	12.6	357
7	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330
8	A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 2006, 80, 1-19.	5.7	279
9	Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14500-14505.	7.1	243
10	A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in Neuroendocrinology, 2008, 29, 142-165.	5.2	221
11	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
12	The genome of the leaf-cutting ant <i>Acromyrmex echinatior</i> suggests key adaptations to advanced social life and fungus farming. Genome Research, 2011, 21, 1339-1348.	5.5	210
13	Genomics, Transcriptomics, and Peptidomics of <i>Daphnia pulex</i> Neuropeptides and Protein Hormones. Journal of Proteome Research, 2011, 10, 4478-4504.	3.7	179
14	A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Current Biology, 2015, 25, 613-620.	3.9	171
15	Genomics and Peptidomics of Neuropeptides and Protein Hormones Present in the Parasitic Wasp <i>Nasonia vitripennis</i> . Journal of Proteome Research, 2010, 9, 5296-5310.	3.7	167
16	Discovery of a Novel Insect Neuropeptide Signaling System Closely Related to the Insect Adipokinetic Hormone and Corazonin Hormonal Systems. Journal of Biological Chemistry, 2010, 285, 10736-10747.	3.4	163
17	Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3262-3267.	7.1	154
18	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154

FRANK HAUSER

#	Article	IF	CITATIONS
19	Drosophilamolting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Letters, 2005, 579, 2171-2176.	2.8	144
20	Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. General and Comparative Endocrinology, 2014, 209, 35-49.	1.8	131
21	Mini-review: The evolution of neuropeptide signaling. Regulatory Peptides, 2012, 177, S6-S9.	1.9	122
22	Molecular Cloning, Genomic Organization, and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Members of the Thyroid-stimulating Hormone, Follicle-stimulating Hormone, Luteinizing Hormone/Choriogonadotropin Receptor Family from Mammals. Journal of Biological Chemistry, 1997, 272, 1002-1010.	3.4	118
23	The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia?. Trends in Biochemical Sciences, 1993, 18, 239-243.	7.5	117
24	The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochemical and Biophysical Research Communications, 2005, 335, 14-19.	2.1	114
25	Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2. Biochemical and Biophysical Research Communications, 2002, 299, 628-633.	2.1	104
26	Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor fromDrosophila melanogasterStructurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates. Biochemical and Biophysical Research Communications, 1998, 249, 822-828.	2.1	96
27	Intestinal trefoil factor (TFF 3) and pS2 (TFF 1), but not spasmolytic polypeptide (TFF 2) mRNAs are co-expressed in normal, hyperplastic, and neoplastic human breast epithelium. , 1997, 183, 30-38.		95
28	CCHamide-2 Is an Orexigenic Brain-Gut Peptide in Drosophila. PLoS ONE, 2015, 10, e0133017.	2.5	91
29	Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9808-9813.	7.1	86
30	The Drosophila genes CG14593 and CG30106 code for C-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochemical and Biophysical Research Communications, 2011, 404, 184-189.	2.1	80
31	Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2006, 344, 160-165.	2.1	79
32	Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochemical and Biophysical Research Communications, 2003, 309, 485-494.	2.1	77
33	Molecular identification of the first insect ecdysis triggering hormone receptors. Biochemical and Biophysical Research Communications, 2002, 299, 924-931.	2.1	74
34	Molecular Cloning, Genomic Organization, Developmental Regulation, and a Knock-out Mutant of a Novel Leu-rich Repeats-containing G Protein-coupled Receptor (DLGR-2) from Drosophila melanogaster. Genome Research, 2000, 10, 924-938.	5.5	70
35	Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2007, 362, 245-251.	2.1	69
36	Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Briefings in Functional Genomics & Proteomics, 2006, 4, 321-330.	3.8	63

FRANK HAUSER

#	Article	IF	CITATIONS
37	Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cellular and Molecular Life Sciences, 2013, 70, 3231-3242.	5.4	63
38	Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata. Biochemical Journal, 1998, 332, 403-412.	3.7	62
39	Molecular identification of the first SIFamide receptor. Biochemical and Biophysical Research Communications, 2006, 340, 696-701.	2.1	58
40	Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochemical and Biophysical Research Communications, 2003, 303, 146-152.	2.1	55
41	Expression and Developmental Regulation of the Hydra-RFamide and Hydra-LWamide Preprohormone Genes inHydra:Evidence for Transient Phases of Head Formation. Developmental Biology, 1999, 207, 189-203.	2.0	51
42	Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa. Scientific Reports, 2016, 6, 32789.	3.3	51
43	Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin. European Journal of Neuroscience, 2001, 14, 419-425.	2.6	45
44	Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochemical and Biophysical Research Communications, 2006, 343, 638-643.	2.1	45
45	Expression Patterns of the Drosophila Neuropeptide CCHamide-2 and Its Receptor May Suggest Hormonal Signaling from the Gut to the Brain. PLoS ONE, 2013, 8, e76131.	2.5	45
46	Sequence analysis of the promoter region of the rat somatostatin receptor subtype 1 gene. FEBS Letters, 1994, 345, 225-228.	2.8	43
47	Expression of spasmolysin (FIM-A.1): An integumentary mucin from Xenopus laevis. Experimental Cell Research, 1990, 189, 157-162.	2.6	41
48	The promise of insect genomics. Pest Management Science, 2007, 63, 413-416.	3.4	41
49	The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochemical and Biophysical Research Communications, 2015, 462, 358-364.	2.1	40
50	Isolation and Functional Characterization of Calcitonin-Like Diuretic Hormone Receptors in Rhodnius prolixus. PLoS ONE, 2013, 8, e82466.	2.5	40
51	Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides. Biochemical and Biophysical Research Communications, 2011, 412, 578-583.	2.1	38
52	Genomic Organization of a Receptor from Sea Anemones, Structurally and Evolutionarily Related to Glycoprotein Hormone Receptors from Mammals. Biochemical and Biophysical Research Communications, 1998, 252, 497-501.	2.1	37
53	Feeding-induced changes in allatostatin-A and short neuropeptide F in the antennal lobes affect odor-mediated host seeking in the yellow fever mosquito, Aedes aegypti. PLoS ONE, 2017, 12, e0188243.	2.5	36
54	De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics, 2019, 20, 175.	2.8	35

FRANK HAUSER

#	Article	IF	CITATIONS
55	Molecular identification of the first insect proctolin receptor. Biochemical and Biophysical Research Communications, 2003, 306, 437-442.	2.1	34
56	Molecular Cloning of a Peptidylglycine α-Hydroxylating Monooxygenase from Sea Anemones. Biochemical and Biophysical Research Communications, 1997, 241, 509-512.	2.1	32
57	PACAP-38 and PACAP(6–38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor. Frontiers in Cellular Neuroscience, 2019, 13, 114.	3.7	31
58	Genomic Organization and Splicing Variants of a Peptidylglycine α-Hydroxylating Monooxygenase from Sea Anemones. Biochemical and Biophysical Research Communications, 2000, 277, 7-12.	2.1	28
59	Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2005, 327, 29-34.	2.1	25
60	Neuropeptidome of <i>Tribolium castaneum</i> antennal lobes and mushroom bodies. Journal of Comparative Neurology, 2014, 522, 337-357.	1.6	22
61	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
62	Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether Ã) Tj ETQq0 0 0 rgBT /Ove 2015, 10, e0138320.	rlock 10 Ti 2.5	f 50 467 Td (1 17
63	Biosynthesis of frog skin mucins: Cysteine-rich shuffled modules, polydispersities and genetic polymorphism. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 105, 465-472.	0.2	12
64	Functional characterization of mosquito short neuropeptide F receptors. Peptides, 2018, 103, 31-39.	2.4	11
65	Neuropeptide Y (Npy) and Npy Receptors in The Rat Pineal Gland. , 1999, 460, 95-107.		9
66	Molecular cloning and functional expression of the K + channel K V 7.1 and the regulatory subunit KCNE1 from equine myocardium. Research in Veterinary Science, 2017, 113, 79-86.	1.9	7
67	Functional characterization of the dual allatostatin-A receptors in mosquitoes. Peptides, 2018, 99, 44-55.	2.4	7
68	CAPA-gene products in the haematophagous sandfly Phlebotomus papatasi (Scopoli) – vector for leishmaniasis disease. Peptides, 2013, 41, 2-7.	2.4	5
69	Invertebrate Neurohormones and Their Receptors. Results and Problems in Cell Differentiation, 1999, 26, 339-362.	0.7	4
70	An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics, 2021, 22, 862.	2.8	4
71	Arthropod Genomics and Pest Management Targeting GPCRs. , 2013, , 165-177.		3