Erik Berg Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693257/publications.pdf Version: 2024-02-01

FDIK REDC SCHMIDT

#	Article	IF	CITATIONS
1	Plant n-3 PUFA intake may lower the risk of atherosclerotic cardiovascular disease only among subjects with a low intake of marine n-3 PUFAs. European Journal of Nutrition, 2022, 61, 557-559.	1.8	8
2	Omegaâ€3 fatty acids in adipose tissue and risk of atrial fibrillation. European Journal of Clinical Investigation, 2022, 52, e13649.	1.7	6
3	Changes in eicosapentaenoic acid and docosahexaenoic acid and risk of cardiovascular events and atrial fibrillation: A secondary analysis of the OMEMI trial. Journal of Internal Medicine, 2022, 291, 637-647.	2.7	22
4	Lipids, lipoproteins and prevalence of familial hypercholesterolemia in the Faroe Islands – Results from a nationwide laboratory database. Atherosclerosis Plus, 2022, 48, 55-59.	0.3	2
5	Familial hypercholesterolaemia: a study protocol for identification and investigation of potential causes and markers of subclinical coronary artery disease in the Faroe Islands. BMJ Open, 2022, 12, e050857.	0.8	2
6	Substitutions between potatoes and other vegetables and risk of ischemic stroke. European Journal of Nutrition, 2021, 60, 229-237.	1.8	5
7	Feasibility of a multimodal intervention on malnutrition in patients with lung cancer during primary anti-neoplastic treatment. Clinical Nutrition, 2021, 40, 525-533.	2.3	18
8	Effects of n-3 Fatty Acid Supplements in Elderly Patients After Myocardial Infarction. Circulation, 2021, 143, 528-539.	1.6	180
9	Replacing the consumption of red meat with other major dietary protein sources and risk of type 2 diabetes mellitus: a prospective cohort study. American Journal of Clinical Nutrition, 2021, 113, 612-621.	2.2	35
10	Intake of marine n-3 polyunsaturated fatty acids and the risk of incident peripheral artery disease. European Journal of Clinical Nutrition, 2021, 75, 1483-1490.	1.3	2
11	Linoleic acid in adipose tissue and the risk of myocardial infarction: a case–cohort study. European Journal of Nutrition, 2021, 60, 3639-3646.	1.8	3
12	Effect of n-3 PUFA on extracellular matrix protein turnover in patients with psoriatic arthritis: a randomized, double-blind, placebo-controlled trial. Rheumatology International, 2021, 41, 1065-1077.	1.5	8
13	Marine n-3 Polyunsaturated Fatty Acids and Bone Mineral Density in Kidney Transplant Recipients: A Randomized, Placebo-Controlled Trial. Nutrients, 2021, 13, 2361.	1.7	6
14	Are fatty acids associated with disease activity and biomarkers in patients with psoriatic arthritis? Data from a multicenter clinical trial. Rheumatology International, 2021, , 1.	1.5	1
15	Replacement of potatoes with other vegetables and risk of myocardial infarction in the Danish Diet, Cancer and Health cohort. British Journal of Nutrition, 2021, 126, 1709-1716.	1.2	3
16	Serum Levels of Dihomo-Gamma (γ)-Linolenic Acid (DGLA) Are Inversely Associated with Linoleic Acid and Total Death in Elderly Patients with a Recent Myocardial Infarction. Nutrients, 2021, 13, 3475.	1.7	9
17	Intake of marine n-3 polyunsaturated fatty acids and the risk of rheumatoid arthritis: protocol for a cohort study using data from the Danish Diet, Cancer and Health cohort and Danish health registers. BMJ Open, 2021, 11, e047982.	0.8	0
18	One year of omega 3 polyunsaturated fatty acid supplementation does not reduce circulating prothrombotic microvesicles in elderly subjects after suffering a myocardial infarction. Clinical Nutrition, 2021, 40, 5674-5677.	2.3	5

#	Article	IF	CITATIONS
19	Plasma marine n-3 polyunsaturated fatty acids and cardiovascular risk factors: data from the ACE 1950 study. European Journal of Nutrition, 2020, 59, 1505-1515.	1.8	5
20	Marine and plant-based <i>n</i> -3 PUFA and atherosclerotic cardiovascular disease. Proceedings of the Nutrition Society, 2020, 79, 22-29.	0.4	17
21	Arrhythmias in Patients on Maintenance Dialysis: A Cross-sectional Study. American Journal of Kidney Diseases, 2020, 75, 214-224.	2.1	16
22	Familial hypercholesterolaemia: history, diagnosis, screening, management and challenges. Heart, 2020, 106, 1940-1946.	1.2	17
23	Marine n–3 Fatty Acids, Sudden Cardiac Death, and Ischemic Heart Disease: Fish or Supplements?. Journal of Nutrition, 2020, 150, 3055-3057.	1.3	3
24	P0945STUDY PROTOCOL: ADIPOSE TISSUE CONTENT OF N-3 POLYUNSATURATED FATTY ACIDS AND THE RISK OF CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
25	Plasma linoleic acid levels and cardiovascular risk factors: results from the Norwegian ACE 1950 Study. European Journal of Clinical Nutrition, 2020, 74, 1707-1717.	1.3	6
26	Plasma Trans Fatty Acid Levels, Cardiovascular Risk Factors and Lifestyle: Results from the Akershus Cardiac Examination 1950 Study. Nutrients, 2020, 12, 1419.	1.7	6
27	Adipose tissue content of alpha-linolenic acid and development of peripheral artery disease: a Danish case-cohort study. European Journal of Nutrition, 2020, 59, 3191-3200.	1.8	0
28	Marine <i>n</i> -3 fatty acids and CVD: new insights from recent follow-up studies and clinical supplementation trials. Proceedings of the Nutrition Society, 2020, 79, 428-434.	0.4	7
29	Marine n-3 fatty acid consumption in a Norwegian renal transplant cohort: Comparison of a food frequency questionnaire with plasma phospholipid marine n-3 levels. PLoS ONE, 2020, 15, e0244089.	1.1	1
30	Title is missing!. , 2020, 15, e0244089.		0
31	Title is missing!. , 2020, 15, e0244089.		0
32	Title is missing!. , 2020, 15, e0244089.		0
33	Title is missing!. , 2020, 15, e0244089.		0
34	Polyunsaturated Fatty Acids and Risk of Ischemic Stroke. Nutrients, 2019, 11, 1467.	1.7	18
35	Intake of α-linolenic acid is not consistently associated with a lower risk of peripheral artery disease: results from a Danish cohort study. British Journal of Nutrition, 2019, 122, 86-92.	1.2	4
36	Leukocyte telomere length and serum polyunsaturated fatty acids, dietary habits, cardiovascular risk factors and features of myocardial infarction in elderly patients. BMC Geriatrics, 2019, 19, 376.	1.1	10

#	Article	IF	CITATIONS
37	Substitution of poultry and red meat with fish and the risk of peripheral arterial disease: a Danish cohort study. European Journal of Nutrition, 2019, 58, 2731-2739.	1.8	9
38	Effects of marine n-3 fatty acid supplementation in renal transplantation: A randomized controlled trial. American Journal of Transplantation, 2019, 19, 790-800.	2.6	16
39	Marine n-3 Polyunsaturated Fatty Acids and the Risk of Ischemic Stroke. Stroke, 2019, 50, 274-282.	1.0	33
40	Trans-fatty Acids and Survival in Renal Transplantation. , 2019, 29, 169-180.		2
41	Adipose tissue fatty acids present in dairy fat and risk of stroke: the Danish Diet, Cancer and Health cohort. European Journal of Nutrition, 2019, 58, 529-539.	1.8	11
42	Development of Kidney Transplant Fibrosis Is Inversely Associated With Plasma Marine Fatty Acid Level. , 2018, 28, 118-124.		6
43	Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: protocol for a prospective cohort study of prognostic factors and personalised medicine. BMJ Open, 2018, 8, e018166.	0.8	15
44	Substitution of Fish for Red Meat or Poultry and Risk of Ischemic Stroke. Nutrients, 2018, 10, 1648.	1.7	5
45	BLTR1 and CD36 Expressing Microvesicles in Atherosclerotic Patients and Healthy Individuals. Frontiers in Cardiovascular Medicine, 2018, 5, 156.	1.1	2
46	Patterns of adipose tissue fatty acids and the risk of atrial fibrillation: A case-cohort study. PLoS ONE, 2018, 13, e0208833.	1.1	3
47	Effects of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability and Heart Rate in Patients on Chronic Dialysis: A Randomized Controlled Trial. Nutrients, 2018, 10, 1313.	1.7	13
48	Marine n-3 Fatty Acids and the Risk of Peripheral Arterial Disease. Journal of the American College of Cardiology, 2018, 72, 1576-1584.	1.2	13
49	Fatty Acid Composition in Various Types of Cardiac Adipose Tissues and Its Relation to the Fatty Acid Content of Atrial Tissue. Nutrients, 2018, 10, 1506.	1.7	6
50	Adipose tissue content of alpha-linolenic acid and the risk of ischemic stroke and ischemic stroke subtypes: A Danish case-cohort study. PLoS ONE, 2018, 13, e0198927.	1.1	10
51	Adipose Tissue Lipophilic Index and Risk of Ischemic Stroke—A Danish Case-Cohort Study. Nutrients, 2018, 10, 1570.	1.7	5
52	Trans fatty acids in adipose tissue and risk of myocardial infarction: A case-cohort study. PLoS ONE, 2018, 13, e0202363.	1.1	10
53	Marine <i>n</i> -3 PUFA, heart rate variability and ventricular arrhythmias in patients on chronic dialysis: a cross-sectional study. British Journal of Nutrition, 2018, 120, 317-325.	1.2	4
54	Dietary Intake of α-Linolenic Acid Is Not Appreciably Associated with Risk of Ischemic Stroke among Middle-Aged Danish Men and Women. Journal of Nutrition, 2018, 148, 952-958.	1.3	13

#	Article	IF	CITATIONS
55	Linoleic Acid in Adipose Tissue and Development of Ischemic Stroke: A Danish Caseâ€Cohort Study. Journal of the American Heart Association, 2018, 7, .	1.6	14
56	Plasma n-6 Polyunsaturated Fatty Acid Levels and Survival in Renal Transplantation. , 2018, 28, 333-339.		1
57	Preoperative Electrocardiogram Score for Predicting New-Onset Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2017, 31, 69-76.	0.6	11
58	Marine n-3 polyunsaturated fatty acids affect the blood pressure control in patients with newly diagnosed hypertension $\hat{a} \in $ a 1-year follow-up study. Nutrition Research, 2017, 38, 71-78.	1.3	7
59	Substitution of Linoleic Acid for Other Macronutrients and the Risk of Ischemic Stroke. Stroke, 2017, 48, 3190-3195.	1.0	13
60	Predictive value of stroke discharge diagnoses in the Danish National Patient Register. Scandinavian Journal of Public Health, 2017, 45, 630-636.	1.2	69
61	Adipose tissue content of saturated fatty acids and atrial fibrillation: A caseâ€cohort study. European Journal of Clinical Investigation, 2017, 47, e12836.	1.7	2
62	Effect of Dietary Intake of Saturated Fatty Acids on the Development of Atrial Fibrillation and the Effect of Replacement of Saturated With Monounsaturated and Polyunsaturated Fatty Acids. American Journal of Cardiology, 2017, 120, 1129-1132.	0.7	7
63	Plasma Levels of Marine n-3 Fatty Acids Are Inversely Correlated With Proinflammatory Markers sTNFR1 and IL-6 in Renal Transplant Recipients. , 2017, 27, 161-168.		8
64	A Proposal for a Study on Treatment Selection and Lifestyle Recommendations in Chronic Inflammatory Diseases: A Danish Multidisciplinary Collaboration on Prognostic Factors and Personalised Medicine. Nutrients, 2017, 9, 499.	1.7	24
65	Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study. PLoS ONE, 2017, 12, e0190262.	1.1	13
66	Serum Fatty Acids, Traditional Risk Factors, and Comorbidity as Related to Myocardial Injury in an Elderly Population with Acute Myocardial Infarction. Journal of Lipids, 2016, 2016, 1-7.	1.9	11
67	Substitutions of red meat, poultry and fish and risk of myocardial infarction. British Journal of Nutrition, 2016, 115, 1571-1578.	1.2	14
68	Marine nâ^'3 fatty acids and the risk of new-onset postoperative atrial fibrillation after cardiac surgery. Vascular Pharmacology, 2016, 87, 23-25.	1.0	1
69	Substitution of meat and fish with vegetables or potatoes and risk of myocardial infarction. British Journal of Nutrition, 2016, 116, 1602-1610.	1.2	22
70	The effect of marine n-3 polyunsaturated fatty acids on cardiac autonomic and hemodynamic function in patients with psoriatic arthritis: a randomised, double-blind, placebo-controlled trial. Lipids in Health and Disease, 2016, 15, 216.	1.2	19
71	Long chain n-3 polyunsaturated fatty acids and vascular function in patients with chronic kidney disease and healthy subjects: a cross-sectional and comparative study. BMC Nephrology, 2016, 17, 184.	0.8	1
72	Association of fish consumption and dietary intake of marine <i>n</i> -3 PUFA with myocardial infarction in a prospective Danish cohort study. British Journal of Nutrition, 2016, 116, 167-177.	1.2	23

#	Article	IF	CITATIONS
73	Plasma n-3 Polyunsaturated Fatty Acids and Bone Mineral Density in Renal Transplant Recipients. , 2016, 26, 196-203.		6
74	Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrology Dialysis Transplantation, 2016, 31, 160-167.	0.4	17
75	Marine n-3 polyunsaturated fatty acids lower plasma proprotein convertase subtilisin kexin type 9 levels in pre- and postmenopausal women: A randomised study. Vascular Pharmacology, 2016, 76, 37-41.	1.0	27
76	Assessment of enthesitis in patients with psoriatic arthritis using clinical examination and ultrasound. Muscles, Ligaments and Tendons Journal, 2016, 6, 241-247.	0.1	20
77	Common Polymorphisms in the 5-Lipoxygenase Pathway and Risk of Incident Myocardial Infarction: A Danish Case-Cohort Study. PLoS ONE, 2016, 11, e0167217.	1.1	11
78	The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1246-1256.	2.2	39
79	The Effect of n-3 Fatty Acids on Small Dense Low-Density Lipoproteins in Patients With End-Stage Renal Disease: A Randomized Placebo-Controlled Intervention Study. , 2015, 25, 376-380.		12
80	Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 2015, 349, 1343-1347.	6.0	397
81	Adipose tissue <i>trans</i> -fatty acids and changes in body weight and waist circumference. British Journal of Nutrition, 2014, 111, 1283-1291.	1.2	3
82	A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial fluttera Danish cohort study. Europace, 2014, 16, 1554-1561.	0.7	39
83	Rapid Incorporation of ωâ€3 Fatty Acids Into Colonic Tissue After Oral Supplementation in Patients With Colorectal Cancer. Journal of Parenteral and Enteral Nutrition, 2014, 38, 617-624.	1.3	25
84	Fish intake and venous thromboembolism: A Danish follow-up study. Thrombosis Research, 2014, 133, 352-356.	0.8	10
85	Effects of Perioperative Supplementation with Omega-3 Fatty Acids on Leukotriene B4 and Leukotriene B5 Production by Stimulated Neutrophils in Patients with Colorectal Cancer: A Randomized, Placebo-Controlled Intervention Trial. Nutrients, 2014, 6, 4043-4057.	1.7	36
86	Validity of the diagnoses atrial fibrillation and atrial flutter in a Danish patient registry. Scandinavian Cardiovascular Journal, 2012, 46, 149-153.	0.4	174
87	Marine n-3 Polyunsaturated Fatty Acids in Adipose Tissue and the Risk of Acute Coronary Syndrome. Circulation, 2011, 124, 1232-1238.	1.6	50
88	Marine n-3 Polyunsaturated Fatty Acids inÂPatients With End-stage Renal Failure andÂin Subjects Without Kidney Disease: AÂComparative Study. , 2011, 21, 169-175.		49
89	The incorporation of marine <i>n</i> -3 PUFA into platelets and adipose tissue in pre- and postmenopausal women: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition, 2010, 104, 318-325.	1.2	18
90	An Association Between Dietary Arachidonic Acid, Measured in Adipose Tissue, and Ulcerative Colitis. Gastroenterology, 2010, 139, 1912-1917.	0.6	83

#	Article	IF	CITATIONS
91	Cardiovascular effects of marine omega-3 fatty acids. Lancet, The, 2010, 376, 540-550.	6.3	450
92	Marine N-3 polyunsaturated fatty acids and coronary heart disease: come a long way but expect more. Cellular and Molecular Biology, 2010, 56, 1-3.	0.3	1
93	Perforated Peptic Ulcer-a Complication in Acute Salicylate Intoxication. Acta Medica Scandinavica, 2009, 222, 191-192.	0.0	1
94	The effect of marine n-3 fatty acids in different doses on plasma concentrations of Lp-PLA2 in healthy adults. European Journal of Nutrition, 2009, 48, 1-5.	1.8	25
95	Lipoprotein-associated phospholipase A2 concentrations in plasma are associated with the extent of coronary artery disease and correlate to adipose tissue levels of marine n-3 fatty acids. Atherosclerosis, 2008, 196, 420-424.	0.4	26
96	The Effect of n-3 Fatty Acids on Heart Rate Variability in Patients Treated With Chronic Hemodialysis. , 2007, 17, 243-249.		27
97	Fish, marine n-3 polyunsaturated fatty acids and coronary heart disease: A minireview with focus on clinical trial data. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 75, 191-195.	1.0	12
98	N-3 Fatty Acids as Secondary Prevention against Cardiovascular Events in Patients Who Undergo Chronic Hemodialysis: A Randomized, Placebo-Controlled Intervention Trial. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 780-786.	2.2	132
99	Marine n-3 polyunsaturated fatty acids and coronary heart disease. Thrombosis Research, 2005, 115, 163-170.	0.8	93
100	The effect of dietaryn-3 fatty acids on serum concentrations of C-reactive protein: a dose–response study. British Journal of Nutrition, 2003, 89, 517-522.	1.2	103
101	Marine n-3 fatty acids: Basic features and background. Lipids, 2001, 36, S65-S68.	0.7	31
102	Marine n-3 Fatty Acids, Wine Intake, and Heart Rate Variability in Patients Referred for Coronary Angiography. Circulation, 2001, 103, 651-657.	1.6	138
103	Heart rate variability and fatty acid content of blood cell membranes: a dose-response study with nâ~'3 fatty acids. American Journal of Clinical Nutrition, 1999, 70, 331-337.	2.2	165
104	Section Review—Cardiovascular & Renal: n-3 Fatty Acids as Adjuvants to Conventional Therapy in Patients with Coronary Artery Disease. Expert Opinion on Investigational Drugs, 1995, 4, 443-455.	1.9	0
105	Safety Aspects of Fish Oils. Drug Investigation, 1994, 7, 215-220.	0.6	13
106	Omega-3 Fatty Acids. Drugs, 1994, 47, 405-424.	4.9	126
107	Interobserver variation in interpretation of electrocardiographic signs of atrial infarction. Clinical Cardiology, 1993, 16, 603-606.	0.7	3
108	Differences in apolipoprotein(a) polymorphism in West Greenland Eskimos and Caucasian Danes. Human Genetics, 1992, 89, 384-8.	1.8	28

#	Article	IF	CITATIONS
109	Uremia in a Family with Tuberous Sclerosis. Scandinavian Journal of Urology and Nephrology, 1987, 21, 79-80.	1.4	4
110	Platelet Number and Volume during Myocardial Infarction in Relation to Infarct Size. Acta Medica Scandinavica, 1986, 220, 401-405.	0.0	32
111	Diagnostic value of the concentration of Mâ€component in initial classification of monoclonal gammopathy. Scandinavian Journal of Haematology, 1986, 36, 295-301.	0.0	17
112	Monoclonal Gammopathy in General Practice Associated Clinical Conditions. Scandinavian Journal of Primary Health Care, 1985, 3, 95-98.	0.6	2
113	Monoclonal Gammopathy in General Practice Diagnostic Value of Typing and Quantitation of Immunoglobulins. Scandinavian Journal of Primary Health Care, 1985, 3, 91-94.	0.6	1