Yoon-Seok Chang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2693129/yoon-seok-chang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

212 8,099 51 77 g-index

212 9,035 8.3 6.26 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
212	Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications. <i>ACS Applied Materials & Discrete Section</i> , 2011, 3, 1457-62	9.5	259
211	Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. <i>ACS Applied Materials & Description of Ma</i>	528-34	256
210	Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 1662-1672	3.8	203
209	Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO2Film under UV or Solar Light Irradiation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	175
208	Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. <i>Chemical Engineering Journal</i> , 2017 , 307, 220-229	14.7	165
207	Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. <i>Environmental Health Perspectives</i> , 2010 , 118, 370-4	8.4	156
206	Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. <i>Science of the Total Environment</i> , 2003 , 311, 177-89	10.2	151
205	Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. <i>Microbial Biotechnology</i> , 2012 , 5, 318-32	6.3	147
204	Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: implications for long-range transport and local pollution. <i>Environmental Science & Description (2008)</i> , 2008, 42, 7125-31	10.3	141
203	Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	139
202	Decolourization of reactive black 5 by laccase: Optimization by response surface methodology. <i>Dyes and Pigments</i> , 2007 , 75, 176-184	4.6	128
201	Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. <i>Environmental Science & Environmental Science </i>	10.3	119
200	Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. <i>Journal of Hazardous Materials</i> , 2009 , 168, 523-9	12.8	110
199	Remediation of Trichloroethylene by FeS-Coated Iron Nanoparticles in Simulated and Real Groundwater: Effects of Water Chemistry. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 9343-9350	3.9	109
198	Enhanced transformation of triclosan by laccase in the presence of redox mediators. <i>Water Research</i> , 2010 , 44, 298-308	12.5	105
197	Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. <i>Applied Microbiology and Biotechnology</i> , 2007 , 77, 187-94	5.7	101
196	Triclosan susceptibility and co-metabolisma comparison for three aerobic pollutant-degrading bacteria. <i>Bioresource Technology</i> , 2011 , 102, 2206-12	11	94

(2006-2015)

195	Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	93
194	Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads. <i>Bioresource Technology</i> , 2016 , 216, 203-10	11	91
193	Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 939-46	5.7	86
192	Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 216-224	3.5	84
191	Influence of a municipal solid waste incinerator on ambient air and soil PCDD/Fs levels. <i>Chemosphere</i> , 2006 , 64, 579-87	8.4	84
190	Three-year atmospheric monitoring of organochlorine pesticides and polychlorinated biphenyls in polar regions and the South Pacific. <i>Environmental Science & Environmental Sc</i>	10.3	83
189	Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. <i>Biodegradation</i> , 2009 , 20, 511-9	4.1	79
188	Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. <i>Applied Microbiology and Biotechnology</i> , 2009 , 82, 341-50	5.7	77
187	Concentrations of polybrominated diphenyl ethers, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in human blood samples from Korea. <i>Science of the Total Environment</i> , 2005 , 336, 45-56	10.2	77
186	Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. <i>Chemosphere</i> , 2014 , 104, 155-61	8.4	73
185	Relative importance of polychlorinated naphthalenes compared to dioxins, and polychlorinated biphenyls in human serum from Korea: contribution to TEQs and potential sources. <i>Environmental Pollution</i> , 2010 , 158, 1420-7	9.3	71
184	Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: Enzymatic colourations driven by homo- or hetero-polymer synthesis. <i>Microbial Biotechnology</i> , 2010 , 3, 324-35	6.3	70
183	Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human serum from urban areas in Korea. <i>Chemosphere</i> , 2008 , 73, 1625-31	8.4	70
182	Oxidative degradation of benzoic acid using Fe 0 - and sulfidized Fe 0 -activated persulfate: A comparative study. <i>Chemical Engineering Journal</i> , 2017 , 315, 426-436	14.7	68
181	Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. <i>Trends in Biotechnology</i> , 2013 , 31, 335-41	15.1	68
180	Detection of Dechlorane Plus in fish from urban-industrial rivers. <i>Chemosphere</i> , 2010 , 79, 850-4	8.4	68
179	Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in atmosphere; evaluation of predicting models. <i>Atmospheric Environment</i> , 2001 , 35, 4125-4134	5.3	68
178	Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p- dioxin by Sphingomonas wittichii strain RW1. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 112-6	4.8	63

177	Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles. <i>Environmental Science & Environmental Science & Envir</i>	10.3	62
176	Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. <i>Journal of Hazardous Materials</i> , 2015 , 287, 335-41	12.8	62
175	A case study of dioxin monitoring in and around an industrial waste incinerator in Korea. <i>Chemosphere</i> , 2005 , 58, 1589-99	8.4	62
174	The evaluation of PCDD/Fs from various Korean incinerators. <i>Chemosphere</i> , 1999 , 38, 2097-2108	8.4	62
173	Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 2584-8	4.8	61
172	Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. <i>Mutagenesis</i> , 2010 , 25, 511-6	2.8	59
171	Comparative study of peroxide oxidants activated by nZVI: Removal of 1,4-Dioxane and arsenic(III) in contaminated waters. <i>Chemical Engineering Journal</i> , 2018 , 334, 2511-2519	14.7	58
170	Reactivity of Fe/FeS nanoparticles: electrolyte composition effects on corrosion electrochemistry. <i>Environmental Science & Environmental Science & En</i>	10.3	57
169	Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. <i>Chemosphere</i> , 2006 , 62, 494-501	8.4	57
168	Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior. <i>Catalysis Today</i> , 2017 , 282, 71-76	5.3	56
167	Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. <i>Chemosphere</i> , 2009 , 77, 1090-8	8.4	56
166	Atmospheric levels and distribution of dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the vicinity of an iron and steel making plant. <i>Atmospheric Environment</i> , 2008 , 42, 2479-2488	5.3	56
165	Influence of exposure to perfluoroalkyl substances (PFASs) on the Korean general population: 10-year trend and health effects. <i>Environment International</i> , 2018 , 113, 149-161	12.9	53
164	Recent developments in microbial biotransformation and biodegradation of dioxins. <i>Journal of Molecular Microbiology and Biotechnology</i> , 2008 , 15, 152-71	0.9	53
163	Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas. <i>Science of the Total Environment</i> , 2009 , 408, 57-63	10.2	52
162	Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. <i>Applied Microbiology and Biotechnology</i> , 2008 , 81, 783-90	5.7	52
161	Effect of Fe-Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation. <i>Bioresource Technology</i> , 2011 , 102, 6019-25	11	51
160	Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from korean municipal solid waste incinerators. <i>Chemosphere</i> , 1999 , 38, 2655-2666	8.4	51

(2005-1999)

159	Evaluation of Polychlorinated Dibenzo-p-dioxin/Dibenzofuran (PCDD/F) Emission in Municipal Solid Waste Incinerators. <i>Environmental Science & Environmental Science</i> 4 (2016) 1999, 33, 2657-2666	10.3	50	
158	Enzymatic polymerization of plant-derived phenols for material-independent and multifunctional coating. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 6501-6509	7.3	49	
157	Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different sizes of airborne particles. <i>Atmospheric Environment</i> , 2002 , 36, 5109-5117	5.3	48	
156	Spatial and seasonal distribution of polychlorinated biphenyls (PCBs) in the vicinity of an iron and steel making plant. <i>Environmental Science & Environmental Science & Envi</i>	10.3	47	
155	Polybrominated diphenyl ethers in blood from Korean incinerator workers and general population. <i>Chemosphere</i> , 2007 , 67, 489-97	8.4	47	
154	A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. <i>Applied Microbiology and Biotechnology</i> , 2003 , 62, 284-90	5.7	45	
153	Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. <i>Journal of Hazardous Materials</i> , 2009 , 163, 222-30	12.8	43	
152	PCB levels and congener patterns from Korean municipal waste incinerator stack emissions. <i>Chemosphere</i> , 2002 , 49, 205-16	8.4	43	
151	Magnetite-based adsorbents for sequestration of radionuclides: a review RSC Advances, 2018, 8, 2521	-2 ₅ 5 / 10	42	
150	Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater. <i>Bioresource Technology</i> , 2014 , 171, 59-65	11	42	
149	Assessment of the spatial distribution of coplanar PCBs, PCNs, and PBDEs in a multi-industry region of South Korea using passive air samplers. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	42	
148	Assessment of PCDD/F risk after implementation of emission reduction at a MSWI. <i>Chemosphere</i> , 2007 , 68, 856-63	8.4	42	
147	Activation of persulfate by a novel Fe(II)-immobilized chitosan/alginate composite for bisphenol A degradation. <i>Chemical Engineering Journal</i> , 2018 , 353, 736-745	14.7	41	
146	Influence of a large steel complex on the spatial distribution of volatile polycyclic aromatic hydrocarbons (PAHs) determined by passive air sampling using membrane-enclosed copolymer (MECOP). <i>Atmospheric Environment</i> , 2007 , 41, 6255-6264	5.3	41	
145	Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. <i>Journal of Hazardous Materials</i> , 2008 , 157, 114-21	12.8	41	
144	Congener-specific approach to human PCB concentrations by serum analysis. <i>Chemosphere</i> , 2007 , 68, 1699-706	8.4	41	
143	Factors affecting the distribution of the rate of carbon uptake by forests in South Korea. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	41	
142	Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. <i>Water Research</i> , 2005 , 39, 4651-60	12.5	40	

141	Advanced oxidation and adsorptive bubble separation of dyes using MnO-coated FeO nanocomposite. <i>Water Research</i> , 2019 , 151, 413-422	12.5	40
140	Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. <i>Journal of Hazardous Materials</i> , 2019 , 364, 19-27	12.8	39
139	Tuning and Characterizing Nanocellulose Interface for Enhanced Removal of Dual-Sorbate (AsV and CrVI) from Water Matrices. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 518-528	8.3	38
138	Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. <i>Journal of Hazardous Materials</i> , 2017 , 325, 82-89	12.8	38
137	Partitioning behavior of heavy metals and persistent organic pollutants among feto-maternal bloods and tissues. <i>Environmental Science & Environmental & Envir</i>	10.3	38
136	Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. <i>Journal of Preventive Medicine and Public Health</i> , 2010 , 43, 1-8	3.7	38
135	Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. <i>Biodegradation</i> , 2004 , 15, 303-13	4.1	37
134	Spatial distribution of polychlorinated biphenyls, organochlorine pesticides, and dechlorane plus in Northeast Asia. <i>Atmospheric Environment</i> , 2013 , 64, 40-46	5.3	36
133	Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: modeling of rate kinetics and congener profile. <i>Journal of Hazardous Materials</i> , 2013 , 250-251, 397-402	12.8	36
132	Exposure assessment and health risk of poly-brominated diphenyl ether (PBDE) flame retardants in the indoor environment of elementary school students in Korea. <i>Science of the Total Environment</i> , 2014 , 470-471, 1376-89	10.2	35
131	Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction. <i>BioFactors</i> , 2013 , 39, 494-504	6.1	35
130	Superparamagnetic Adsorbent Based on Phosphonate Grafted Mesoporous Carbon for Uranium Removal. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 9821-9830	3.9	35
129	Persistent and emerging pollutants in the blood of German adults: Occurrence of dechloranes, polychlorinated naphthalenes, and siloxanes. <i>Environment International</i> , 2015 , 85, 292-8	12.9	35
128	Deposition of organochlorine pesticides into the surface snow of East Antarctica. <i>Science of the Total Environment</i> , 2012 , 433, 290-5	10.2	35
127	Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Science of the Total Environment</i> , 2012 , 435-436, 563-6	10.2	35
126	Associations among organochlorine pesticides, Methanobacteriales, and obesity in Korean women. <i>PLoS ONE</i> , 2011 , 6, e27773	3.7	35
125	Assessment of polybrominated diphenyl ethers (PBDEs) in serum from the Korean general population. <i>Environmental Pollution</i> , 2012 , 164, 46-52	9.3	34
124	Assessment of variations in atmospheric PCDD/Fs by Asian dust in Southeastern Korea. <i>Atmospheric Environment</i> , 2007 , 41, 5876-5886	5.3	34

123	Congener-distribution patterns and risk assessment of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans in Korean human milk. <i>Chemosphere</i> , 2002 , 47, 1087-95	8.4	34	
122	Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish. <i>Environmental Pollution</i> , 2017 , 226, 515-5	52 ^{9.3}	32	
121	Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown. <i>Nanomaterials</i> , 2019 , 9,	5.4	32	
120	Biosorption of 1,2,3,4-tetrachlorodibenzo-p-dioxin and polychlorinated dibenzofurans by Bacillus pumilus. <i>Water Research</i> , 2000 , 34, 349-353	12.5	32	
119	Human exposure to HBCD and TBBPA via indoor dust in Korea: Estimation of external exposure and body burden. <i>Science of the Total Environment</i> , 2017 , 593-594, 779-786	10.2	30	
118	Hexabromocyclododecane (HBCD) in the Korean food basket and estimation of dietary exposure. <i>Environmental Pollution</i> , 2016 , 213, 268-277	9.3	30	
117	Self-Generation of Reactive Oxygen Species on Crystalline AgBiO for the Oxidative Remediation of Organic Pollutants. <i>ACS Applied Materials & District Remediation</i> , 9, 28426-28432	9.5	30	
116	Recyclable superparamagnetic adsorbent based on mesoporous carbon for sequestration of radioactive Cesium. <i>Chemical Engineering Journal</i> , 2017 , 308, 798-808	14.7	30	
115	Enhancing the reactivity of bimetallic Bi/Fe(0) by citric acid for remediation of polluted water. <i>Journal of Hazardous Materials</i> , 2016 , 310, 135-42	12.8	29	
114	Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 1508-17	5.1	29	
113	HBCD and TBBPA in human scalp hair: Evidence of internal exposure. <i>Chemosphere</i> , 2018 , 207, 70-77	8.4	28	
112	Health survey on workers and residents near the municipal waste and industrial waste incinerators in Korea. <i>Industrial Health</i> , 2003 , 41, 181-8	2.5	28	
111	Pinched inlet split flow thin fractionation for continuous particle fractionation: application to marine sediments for size-dependent analysis of PCDD/Fs and metals. <i>Analytical Chemistry</i> , 2004 , 76, 3236-43	7.8	28	
110	Macroporous alginate substrate-bound growth of Fe0 nanoparticles with high redox activities for nitrate removal from aqueous solutions. <i>Chemical Engineering Journal</i> , 2016 , 298, 206-213	14.7	28	
109	Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	27	
108	Equilibrium, thermodynamics and kinetics studies for the removal of alpha and beta endosulfan by adsorption onto bentonite clay. <i>Chemical Engineering Journal</i> , 2012 , 192, 369-376	14.7	27	
107	Occurrence of Dechlorane compounds and polybrominated diphenyl ethers (PBDEs) in the Korean general population. <i>Environmental Pollution</i> , 2016 , 212, 330-336	9.3	26	
106	Investigating Dechlorane Plus (DP) distribution and isomer specific adsorption behavior in size fractionated marine sediments. <i>Science of the Total Environment</i> , 2014 , 481, 114-20	10.2	26	

105	Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans in different particle size fractions of marine sediments. <i>Environmental Pollution</i> , 2006 , 144, 554-61	9.3	26
104	Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron Litric acid system. <i>Chemical Engineering Journal</i> , 2020 , 382, 122828	14.7	26
103	Zerovalent-Iron/Platinum Janus Micromotors with Spatially Separated Functionalities for Efficient Water Decontamination. <i>ACS Applied Nano Materials</i> , 2018 , 1, 768-776	5.6	25
102	Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium. <i>Journal of Hazardous Materials</i> , 2007 , 140, 145-8	12.8	25
101	Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. <i>Global Biogeochemical Cycles</i> , 2002 , 16, 36-1-36-5	5.9	25
100	Novel self-assembled bimetallic structure of Bi/Fe(0): the oxidative and reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). <i>Journal of Hazardous Materials</i> , 2015 , 286, 107-17	12.8	24
99	Dioxin and dioxin-like PCB profiles in the serum of industrial and municipal waste incinerator workers in Korea. <i>Environment International</i> , 2009 , 35, 580-7	12.9	24
98	Characterization of the ethyl-triphenylphosphonium derivative of model peptides by fast atom bombardment collisionally-activated dissociation tandem mass spectrometry using B/E linked scans. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1991 , 111, 191-209		24
97	Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal. <i>Biotechnology Advances</i> , 2013 , 31, 246-56	17.8	23
96	Enhanced oxidative activity of zero-valent iron by citric acid complexation. <i>Chemical Engineering Journal</i> , 2019 , 373, 891-901	14.7	22
95	Diastereoisomer- and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates. <i>Journal of Hazardous Materials</i> , 2015 , 300, 114-120	12.8	22
94	Photocatalytic degradation of chlorophenols using star block copolymers: Removal efficiency, by-products and toxicity of catalyst. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 921-928	14.7	22
93	Continuous fractionation of fly ash particles by SPUTT for the investigation of PCDD/Fs levels in different sizes of insoluble particles. <i>Environmental Science & Environmental Science & Environment</i>	10.3	22
92	Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction. <i>Current Opinion in Biotechnology</i> , 2016 , 38, 71-8	11.4	21
91	Comparative toxicity of bimetallic Fe nanoparticles toward Escherichia coli: mechanism and environmental implications. <i>Environmental Science: Nano</i> , 2014 , 1, 233	7.1	21
90	Enhanced removal of chromate from aqueous solution by sequential adsorption reduction on mesoporous iron reduction oxide nanocomposites. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	21
89	Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. <i>Applied Microbiology and Biotechnology</i> , 2010 , 87, 1569-77	5.7	21
88	Assessment of Dechlorane compounds in foodstuffs obtained from retail markets and estimates of dietary intake in Korean population. <i>Journal of Hazardous Materials</i> , 2014 , 275, 19-25	12.8	20

(2020-2011)

87	Characterization of major offensive odorants released from lake sediment. <i>Atmospheric Environment</i> , 2011 , 45, 1236-1241	5.3	20
86	Carbon monoxide monitoring in Northeast Asia using MOPITT: Effects of biomass burning and regional pollution in April 2000. <i>Atmospheric Environment</i> , 2006 , 40, 686-697	5.3	20
85	Progressive risk assessment of polychlorinated biphenyls through a Total Diet Study in the Korean population. <i>Environmental Pollution</i> , 2015 , 207, 403-12	9.3	19
84	Characteristic occurrence patterns of micropollutants and their removal efficiencies in industrial wastewater treatment plants. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 391-7		19
83	Uptake, Distribution, and Transformation of Zerovalent Iron Nanoparticles in the Edible Plant Cucumis sativus. <i>Environmental Science & Environmental </i>	10.3	18
82	Ten-year time trend of dioxins in human serum obtained from metropolitan populations in Seoul, Korea. <i>Science of the Total Environment</i> , 2014 , 470-471, 1338-45	10.2	18
81	Assessment of the daily intake of 62 polychlorinated biphenyls from dietary exposure in South Korea. <i>Chemosphere</i> , 2012 , 89, 957-63	8.4	18
8o	Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs. <i>Environmental Pollution</i> , 2008 , 153, 215-22	9.3	18
79	Hydroxylamine-assisted peroxymonosulfate activation using cobalt ferrite for sulfamethoxazole degradation. <i>Chemical Engineering Journal</i> , 2020 , 386, 123751	14.7	18
78	Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica. <i>Journal of Hazardous Materials</i> , 2021 , 405, 1241	4 ^{72.8}	18
77	Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 163, 436-443	7	17
76	Exposure of general population to PBDEs: a Progressive Total Diet Study in South Korea. <i>Environmental Pollution</i> , 2014 , 195, 192-201	9.3	17
75	Characteristics and emission factors of PCDD/Fs in various industrial wastes in South Korea. <i>Chemosphere</i> , 2009 , 75, 1226-31	8.4	17
74	PCBs contributions to the total TEQ released from Korean municipal and industrial waste incinerators. <i>Chemosphere</i> , 1999 , 39, 2629-2640	8.4	17
73	Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica. <i>Environmental Pollution</i> , 2018 , 235, 302-311	9.3	16
72	Adsorption of halogenated aromatic pollutants by a protein released from Bacillus pumilus. <i>Water Research</i> , 2003 , 37, 4004-10	12.5	16
71	Evaluation of serum dioxin congeners among residents near continuously burning municipal solid waste incinerators in Korea. <i>International Archives of Occupational and Environmental Health</i> , 2005 , 78, 205-10	3.2	16
70	Fe(III) adsorption on graphene oxide: A low-cost and simple modification method for persulfate activation. <i>Chemical Engineering Journal</i> , 2020 , 387, 124012	14.7	16

69	In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study. <i>Chemosphere</i> , 2020 , 257, 127117	8.4	15
68	Atmospheric bulk deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the vicinity of an iron and steel making plant. <i>Chemosphere</i> , 2011 , 84, 894-9	8.4	15
67	Modeling the reductive dechlorination of polychlorinated dibenzo-p-dioxins: kinetics, pathway, and equivalent toxicity. <i>Environmental Science & Environmental Science & Envir</i>	10.3	15
66	Superparamagnetic nalidixic acid grafted magnetite (Fe3O4/NA) for rapid and efficient mercury removal from water. <i>RSC Advances</i> , 2016 , 6, 35825-35832	3.7	15
65	Estimated dietary intake and risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls from fish consumption in the Korean general population. <i>Chemosphere</i> , 2016 , 146, 419-25	8.4	14
64	Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. <i>Science of the Total Environment</i> , 2014 , 470-471, 1553-7	10.2	14
63	Synthesis of metal sulfide-coated iron nanoparticles with enhanced surface reactivity and biocompatibility. <i>RSC Advances</i> , 2013 , 3, 5338	3.7	14
62	Influence of non-detect data-handling on toxic equivalency quantities of PCDD/Fs and dioxin-like PCBs: A case study of major fish species purchased in Korea. <i>Environmental Pollution</i> , 2016 , 214, 532-53	8 ^{9.3}	14
61	Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids. <i>Science of the Total Environment</i> , 2019 , 689, 444-450	10.2	13
60	Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. <i>Journal of Applied Microbiology</i> , 2014 , 116, 542-53	4.7	13
59	Increase in carbon emissions from forest fires after intensive reforestation and forest management programs. <i>Science of the Total Environment</i> , 2006 , 372, 225-35	10.2	13
58	Photosensitized diastereoisomer-specific degradation of hexabromocyclododecane (HBCD) in the presence of humic acid in aquatic systems. <i>Journal of Hazardous Materials</i> , 2019 , 369, 171-179	12.8	12
57	Polychlorinated naphthalenes (PCNs) in seafood: Estimation of dietary intake in Korean population. <i>Science of the Total Environment</i> , 2018 , 624, 40-47	10.2	12
56	Dihydroxynaphthalene-based mimicry of fungal melanogenesis for multifunctional coatings. <i>Microbial Biotechnology</i> , 2016 , 9, 305-15	6.3	12
55	Effects of inorganic nanoparticles on viability and catabolic activities of Agrobacterium sp. PH-08 during biodegradation of dibenzofuran. <i>Biodegradation</i> , 2014 , 25, 655-68	4.1	12
54	Suppressing effect of goethite on PCDD/F and HCB emissions from plastic materials incineration. <i>Chemosphere</i> , 2008 , 70, 1568-76	8.4	12
53	Prevalence of low chlorinated dibenzo-p-dioxin/dibenzofurans in human serum. <i>Chemosphere</i> , 2013 , 90, 1658-63	8.4	11
52	On-line particle concentrator with upstream ultrafiltration in continuous SPLITT fractionation. Analytical Chemistry, 2001, 73, 693-7	7.8	11

(2021-1992)

51	Charge-remote fragmentation during FAB-CAD-B/E linked-scan mass spectrometry of aminoethyl-triphenylphosphonium derivatives of fatty acids. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 769-75	3.5	11
50	A novel self-assembling nanoparticle of Ag-Bi with high reactive efficiency. <i>Chemical Communications</i> , 2014 , 50, 8597-600	5.8	10
49	Deposition of polychlorinated biphenyls and polybrominated diphenyl ethers in the vicinity of a steel manufacturing plant. <i>Atmospheric Environment</i> , 2012 , 49, 206-211	5.3	9
48	Determination of diapycnal diffusion rates in the upper thermocline in the North Atlantic Ocean using sulfur hexafluoride. <i>Journal of Geophysical Research</i> , 2005 , 110,		9
47	Levels and characteristic homologue patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans in various incinerator emissions and in air collected near an incinerator. <i>Journal of the Air and Waste Management Association</i> , 2002 , 52, 69-75	2.4	9
46	Charge-remote fragmentation in a disulfide-containing peptide, [Pen]-enkephalin, under fast atom bombardment collisionally activated dissociation conditions. <i>Biological Mass Spectrometry</i> , 1993 , 22, 176-80		9
45	Photochemistry of irgasan-triflate: A simple conversion of an aromatic hydroxyl group to chlorine in the synthesis of polychlorinated diphenyl ethers and polychlorinated dibenzofurans. <i>Tetrahedron</i> , 1990 , 46, 4161-4164	2.4	9
44	Tunichrome-Inspired Gold-Enrichment Dispersion Matrix and Its Application in Water Treatment: A Proof-of-Concept Investigation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 19815-19824	9.5	8
43	Sorption behavior of heavy metals on poorly crystalline manganese oxides: roles of water conditions and light. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 1519-25	4.3	8
42	Congener-specific distribution of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in animal feed. <i>Food Additives and Contaminants</i> , 2003 , 20, 659-67		8
41	Determinants of serum organochlorine pesticide and polychlorinated biphenyl levels in middle-aged Korean adults. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 249-259	5.1	7
40	Passive air sampling of persistent organic pollutants in Korea. <i>Toxicology and Environmental Health Sciences</i> , 2009 , 1, 75-82	1.9	7
39	Tunichrome mimetic matrix, its perspective in abatement for carcinogenic hexavalent chromium and specific coordination behavior. <i>Chemical Engineering Journal</i> , 2017 , 328, 629-638	14.7	6
38	Monitoring of PCBs at facilities related with PCB-containing products and wastes in South Korea. Journal of Hazardous Materials, 2011 , 196, 295-301	12.8	6
37	Bacterial detection of the toxicity of dioxins, polychlorinated diphenyls, and polybrominated diphenyl ethers. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2238-42	3.8	6
36	Size fractionation of marine sediments by pinched inlet gravitational split-flow thin fractionation and the study of size dependent PCDD/Fs concentrations from different bay areas. <i>Journal of Separation Science</i> , 2005 , 28, 373-9	3.4	6
35	Isolation and characterization of a cell-associated protein of Bacillus pumilus PH-01. <i>Applied Microbiology and Biotechnology</i> , 2001 , 56, 402-5	5.7	6
34	Electrocatalytic dehalogenation of aqueous pollutants by dealloyed nanoporous Pd/Ti cathode. <i>Catalysis Today</i> , 2021 , 361, 63-68	5.3	6

33	Ligand-Assisted Sequential Redox Degradation of Tetrabromobisphenol A Using Bimetallic Zero-Valent Iron Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 17329-17337	, 3.9	6
32	Evaluation of toxicological biomarkers in secreted proteins of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and their expressions in the plasma of rats and incineration workers. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2016 , 1864, 584-93	4	5
31	Levels of polybrominated diphenyl ethers in the Korean metropolitan population are declining: A trend from 2001 to 2013. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2323-2330	3.8	5
30	Sequencing of novel protein from Bacillus pumilus PH-01 using a high-resolution hybrid quadrupole-time-of-flight mass spectrometer. <i>International Journal of Mass Spectrometry</i> , 2001 , 209, 47-55	1.9	5
29	Mechanically combined persulfate on zerovalent iron: Mechanistic insights into reduction and oxidation processes. <i>Chemical Engineering Journal</i> , 2021 , 414, 128772	14.7	5
28	Evaluation of carbon uptake and emissions by forests in Korea during the last thirty years (1973-2002). <i>Environmental Monitoring and Assessment</i> , 2006 , 117, 99-107	3.1	4
27	Pinched inlet gravitational split-flow thin fractionation of airborne particles and analysis of size dependent level of PCDD/Fs. <i>Journal of Separation Science</i> , 2005 , 28, 1231-6	3.4	4
26	Regiospecific synthesis of polychlorinated dibenzofurans with chlorine-37 excess. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 1991 , 29, 43-62	1.9	4
25	Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127068	12.8	4
24	A Catabolic Activity of Sphingomonas wittichii RW1 in the Biotransformation of Carbazole. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 943-949	2.6	3
23	Experimental study of solute transport and extraction by a single root in soil. <i>Plant and Soil</i> , 2005 , 269, 213-224	4.2	3
22	Synthesis of Regiospecific Chlorine-37 Labeled Trichlorodibenzofuran. <i>Synthetic Communications</i> , 1990 , 20, 2501-2506	1.7	3
21	Estimation of Air Concentrations of PCBs using Passive Air Samplers (PAS) and a Gas/particle Partition Model. <i>Journal of Korean Society for Atmospheric Environment</i> , 2007 , 23, 734-743	1.5	3
20	Factors associated with partitioning behavior of persistent organic pollutants in a feto-maternal system: A multiple linear regression approach. <i>Chemosphere</i> , 2021 , 263, 128247	8.4	3
19	Carbon-nitride-based micromotor driven by chromate-hydrogen peroxide redox system: Application for removal of sulfamethaxazole. <i>Journal of Colloid and Interface Science</i> , 2021 , 597, 94-103	9.3	3
18	Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in crucian carp (Carassius auratus) from rivers in Korea during 2000-2004. <i>Chemosphere</i> , 2009 , 75, 1221-5	8.4	2
17	Mass spectrometric analysis of isotope effects in bioconversion of benzene to cyclohexanone. <i>International Journal of Mass Spectrometry</i> , 2006 , 252, 256-260	1.9	2
16	2,2Q4,6,6QPentachlorobiphenyl induces mitotic arrest and p53 activation. <i>Toxicological Sciences</i> , 2004 , 78, 215-21	4.4	2

LIST OF PUBLICATIONS

15	Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus. <i>Environmental Pollution</i> , 2020 , 267, 115306	9.3	2
14	Health risk assessment of exposure to organochlorine pesticides in the general population in Seoul, Korea over 12 years: A cross-sectional epidemiological study. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127381	12.8	2
13	Comments on "halogenated pesticide transformation by a laccase-mediator system" by C. Torres-Duarte, R. Roman, R. Tinoco, and R.V. Vazquez-Duhalt [Chemosphere 77 (2009) 687-692]. <i>Chemosphere</i> , 2011 , 85, 1759-60; author reply 1761-2	8.4	1
12	Author@reply to comment on "Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by sphingomonas wittichii RW1" by Rolf U. Halden. <i>Water Research</i> , 2006 , 40, 2246-7	12.5	1
11	Simultaneous removal of heavy metals and dyes in water using a MgO-coated FeO nanocomposite: Role of micro-mixing effect induced by bubble generation <i>Chemosphere</i> , 2022 , 294, 133788	8.4	1
10	Degradation studies of halogenated flame retardants. <i>Comprehensive Analytical Chemistry</i> , 2020 , 88, 303-339	1.9	1
9	Fragmentation of nanoplastics driven by plantinicrobe rhizosphere interaction during abiotic stress combination. <i>Environmental Science: Nano</i> ,	7.1	1
8	Enhancement of the reactivity of sulfidized nanoscale zero-valent iron-persulfate by ligand addition for the oxidative degradation of water pollutants. <i>Materials Today: Proceedings</i> , 2020 , 33, 1389-1395	1.4	0
7	Activation of hydrogen peroxide, persulfate, and free chlorine by steel anode for treatment of municipal and livestock wastewater: Unravelling the role of oxidants speciation <i>Water Research</i> , 2022 , 216, 118305	12.5	0
6	The persistent toxic substances in Korea: environmental fates and human health. <i>Science of the Total Environment</i> , 2014 , 470-471, 1337	10.2	
5	Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Nanosized and Bimetallic Zerovalent Iron. <i>ACS Symposium Series</i> , 2010 , 89-115	0.4	
4	Dietary exposure and potential human health risk of dioxins in South Korea: Application of deterministic and probabilistic methods. <i>Chemosphere</i> , 2021 , 291, 133018	8.4	
3	Microbial Volatile Organic Compound (VOC)-Driven Dissolution and Surface Modification of Phosphorus-Containing Soil Minerals for Plant Nutrition: An Indirect Route for VOC-Based Plant-Microbe Communications. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 14478-14487	5.7	
2	Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies. <i>Journal of Soil and Groundwater Environment</i> , 2015 , 20, 117-126		
1	Twenty-year trends and exposure assessment of polychlorinated dibenzodioxins and dibenzofurans in human serum from the Seoul citizens. <i>Chemosphere</i> , 2021 , 273, 128558	8.4	