Ã-zlem TÃ¹/₄reci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693051/publications.pdf

Version: 2024-02-01

118 36,707 papers citations

56 h-index 20961 115 g-index

128 all docs 128 docs citations 128 times ranked 40608 citing authors

#	Article	IF	Citations
1	Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age. New England Journal of Medicine, 2022, 386, 35-46.	27.0	431
2	Identification of neoantigens for individualized therapeutic cancer vaccines. Nature Reviews Drug Discovery, 2022, 21, 261-282.	46.4	173
3	Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine–elicited human sera. Science, 2022, 375, 678-680.	12.6	303
4	The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. MBio, 2022, 13, e0297921.	4.1	117
5	Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. New England Journal of Medicine, 2022, 386, 1910-1921.	27.0	215
6	Clinical development and approval of COVID-19 vaccines. Expert Review of Vaccines, 2022, 21, 609-619.	4.4	26
7	Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial. Vaccine, 2022, 40, 1483-1492.	3.8	32
8	Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunology, Immunotherapy, 2022, 71, 1975-1988.	4.2	11
9	Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Science Immunology, 2022, 7, .	11.9	144
10	Immune Persistence and Safety After SARS-CoV-2 BNT162b1 mRNA Vaccination in Chinese Adults: A Randomized, Placebo-Controlled, Double-Blind Phase 1 Trial. Advances in Therapy, 2022, 39, 3789-3798.	2.9	3
11	A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science, 2021, 371, 145-153.	12.6	253
12	BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592, 283-289.	27.8	494
13	Patient-reported outcomes from the phase II FAST trial of zolbetuximab plus EOX compared to EOX alone as first-line treatment of patients with metastatic CLDN18.2+ gastroesophageal adenocarcinoma. Gastric Cancer, 2021, 24, 721-730.	5.3	23
14	Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera. Science, 2021, 371, 1152-1153.	12.6	485
15	Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nature Medicine, 2021, 27, 1062-1070.	30.7	114
16	mRNA therapeutics in cancer immunotherapy. Molecular Cancer, 2021, 20, 69.	19.2	168
17	BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 2021, 595, 572-577.	27.8	583
18	Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine, 2021, 385, 239-250.	27.0	709

#	Article	IF	Citations
19	SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. New England Journal of Medicine, 2021, 385, 1627-1629.	27.0	346
20	Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. New England Journal of Medicine, 2021, 385, 1761-1773.	27.0	1,090
21	A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nature Communications, 2021, 12, 7105.	12.8	22
22	A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Molecular Therapy, 2020, 28, 119-128.	8.2	99
23	An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science, 2020, 367, 446-453.	12.6	286
24	COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature, 2020, 586, 594-599.	27.8	1,520
25	Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 2020, 383, 2439-2450.	27.0	2,107
26	PhaseÂl/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586, 589-593.	27.8	1,197
27	A liposomal RNA vaccine inducing neoantigen-specific CD4 ⁺ T cells augments the antitumor activity of local radiotherapy in mice. Oncolmmunology, 2020, 9, 1771925.	4.6	32
28	An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585, 107-112.	27.8	526
29	Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 2020, 383, 2603-2615.	27.0	11,472
30	Dexamethasone premedication suppresses vaccine-induced immune responses against cancer. Oncolmmunology, 2020, 9, 1758004.	4.6	17
31	Personalized Neo-Epitope Vaccines for Cancer Treatment. Recent Results in Cancer Research, 2020, 214, 153-167.	1.8	9
32	PLAC1 is essential for FGF7/FGFRIIIb-induced Akt-mediated cancer cell proliferation. Oncotarget, 2020, 11, 1862-1875.	1.8	7
33	HPV16 RNA-LPX vaccine mediates complete regression of aggressively growing HPV-positive mouse tumors and establishes protective T cell memory. Oncolmmunology, 2019, 8, e1629259.	4. 6	58
34	Harnessing Tumor Mutations for Truly Individualized Cancer Vaccines. Annual Review of Medicine, 2019, 70, 395-407.	12.2	54
35	Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in Japanese patients with gastric adenocarcinoma. Japanese Journal of Clinical Oncology, 2019, 49, 870-876.	1.3	64
36	Intravenous delivery of the toll-like receptor 7 agonist SC1 confers tumor control by inducing a CD8+T cell response. OncoImmunology, 2019, 8, e1601480.	4.6	18

#	Article	IF	CITATIONS
37	A non-functional neoepitope specific CD8 ⁺ T-cell response induced by tumor derived antigen exposure <i>in vivo</i> . Oncolmmunology, 2019, 8, 1553478.	4.6	16
38	Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 2019, 27, 824-836.	8.2	191
39	Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. Journal of Nanobiotechnology, 2018, 16, 39.	9.1	23
40	Personalized vaccines for cancer immunotherapy. Science, 2018, 359, 1355-1360.	12.6	697
41	A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. European Journal of Cancer, 2018, 100, 17-26.	2.8	85
42	Challenges towards the realization of individualized cancer vaccines. Nature Biomedical Engineering, 2018, 2, 566-569.	22.5	40
43	Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nature Medicine, 2017, 23, 815-817.	30.7	182
44	The European Regulatory Environment of RNA-Based Vaccines. Methods in Molecular Biology, 2017, 1499, 203-222.	0.9	22
45	Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: Addressing the Mutanome. Methods in Molecular Biology, 2017, 1499, 223-236.	0.9	9
46	Improvement of <i>In Vivo</i> Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins. Human Gene Therapy, 2017, 28, 1138-1146.	2.7	43
47	Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547, 222-226.	27.8	1,806
48	Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity. Journal of Immunology Research, 2016, 2016, 1-13.	2.2	7
49	FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines. Methods in Molecular Biology, 2016, 1428, 163-175.	0.9	9
50	Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clinical Cancer Research, 2016, 22, 1885-1896.	7.0	128
51	Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunology, Immunotherapy, 2016, 65, 1075-1083.	4.2	59
52	The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine, 2016, 8, 334ps9.	12.4	162
53	Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534, 396-401.	27.8	1,243
54	Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncolmmunology, 2016, 5, e1091555.	4.6	39

#	Article	IF	CITATIONS
55	Mutanome directed cancer immunotherapy. Current Opinion in Immunology, 2016, 39, 14-22.	5.5	55
56	Chromatin Immunoprecipitation Assay to Identify Genomic Binding Sites of Regulatory Factors. Methods in Molecular Biology, 2016, 1366, 53-65.	0.9	3
57	CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget, 2015, 6, 25356-25367.	1.8	40
58	Mutanome Engineered RNA Immunotherapy: Towards Patient-Centered Tumor Vaccination. Journal of Immunology Research, 2015, 2015, 1-6.	2.2	27
59	Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520, 692-696.	27.8	1,030
60	Retrieval of functional TCRs from single antigen-specific T cells: Toward individualized TCR-engineered therapies. Oncolmmunology, 2015, 4, e1005523.	4.6	2
61	Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Human Gene Therapy, 2015, 26, 751-766.	2.7	61
62	Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics, 2014, 15, 190.	2.8	334
63	Aberrantly activated claudin 6 and 18.2 as potential therapy targets in nonâ€small ell lung cancer. International Journal of Cancer, 2014, 135, 2206-2214.	5.1	82
64	Peptide microarrays enable rapid mimotope optimization for pharmacokinetic analysis of the novel therapeutic antibody IMAB362. Biotechnology Journal, 2014, 9, 545-554.	3.5	6
65	Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. International Journal of Cancer, 2014, 134, 731-739.	5.1	67
66	mRNA-based therapeutics â€" developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13, 759-780.	46.4	1,501
67	Functional TCR Retrieval from Single Antigen-Specific Human T Cells Reveals Multiple Novel Epitopes. Cancer Immunology Research, 2014, 2, 1230-1244.	3.4	35
68	Mutated tumor alleles are expressed according to their DNA frequency. Scientific Reports, 2014, 4, 4743.	3.3	40
69	Antigen Identification Using SEREX. Methods in Molecular Biology, 2013, 1061, 59-77.	0.9	6
70	NCOA3 is a selective co-activator of estrogen receptor \hat{l}_{\pm} -mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer, 2013, 13, 570.	2.6	21
71	Antitumor Vaccination with Synthetic mRNA: Strategies for In Vitro and In Vivo Preclinical Studies. Methods in Molecular Biology, 2013, 969, 235-246.	0.9	17
72	mTOR Inhibition Improves Antitumor Effects of Vaccination with Antigen-Encoding RNA. Cancer Immunology Research, 2013, 1, 386-392.	3.4	37

#	Article	IF	CITATIONS
73	Confidence-based Somatic Mutation Evaluation and Prioritization. PLoS Computational Biology, 2012, 8, e1002714.	3.2	30
74	Exploiting the Mutanome for Tumor Vaccination. Cancer Research, 2012, 72, 1081-1091.	0.9	706
75	mRNA as a Versatile Tool for Exogenous Protein Expression. Current Gene Therapy, 2012, 12, 347-361.	2.0	57
76	Targeting the tumor mutanome for personalized vaccination therapy. Oncolmmunology, 2012, 1, 768-769.	4.6	55
77	HLA typing from RNA-Seq sequence reads. Genome Medicine, 2012, 4, 102.	8.2	204
78	Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene, 2011, 481, 83-92.	2.2	63
79	FLT3 Ligand Enhances the Cancer Therapeutic Potency of Naked RNA Vaccines. Cancer Research, 2011, 71, 6132-6142.	0.9	70
80	Tumor vaccination using messenger RNA: prospects of a future therapy. Current Opinion in Immunology, 2011, 23, 399-406.	5 . 5	114
81	Highly Specific Auto-Antibodies against Claudin-18 Isoform 2 Induced by a Chimeric HBcAg Virus-Like Particle Vaccine Kill Tumor Cells and Inhibit the Growth of Lung Metastases. Cancer Research, 2011, 71, 516-527.	0.9	45
82	Determinants of intracellular RNA pharmacokinetics: Implications for RNA-based immunotherapeutics. RNA Biology, 2011, 8, 35-43.	3.1	32
83	Intranodal Vaccination with Naked Antigen-Encoding RNA Elicits Potent Prophylactic and Therapeutic Antitumoral Immunity. Cancer Research, 2010, 70, 9031-9040.	0.9	253
84	Selective Activation of Trophoblast-specific PLAC1 in Breast Cancer by CCAAT/Enhancer-binding Protein \hat{l}^2 (C/EBP \hat{l}^2) Isoform 2. Journal of Biological Chemistry, 2009, 284, 28607-28615.	3.4	30
85	Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2. Molecular Cancer, 2009, 8, 77.	19.2	21
86	In silico strategy for detection of target candidates for antibody therapy of solid tumors. Gene, 2008, 414, 76-84.	2.2	2
87	MS4A12 Is a Colon-Selective Store-Operated Calcium Channel Promoting Malignant Cell Processes. Cancer Research, 2008, 68, 3458-3466.	0.9	58
88	Increased Antigen Presentation Efficiency by Coupling Antigens to MHC Class I Trafficking Signals. Journal of Immunology, 2008, 180, 309-318.	0.8	141
89	Claudin-18 Splice Variant 2 Is a Pan-Cancer Target Suitable for Therapeutic Antibody Development. Clinical Cancer Research, 2008, 14, 7624-7634.	7.0	247
90	A Placenta-Specific Gene Ectopically Activated in Many Human Cancers Is Essentially Involved in Malignant Cell Processes. Cancer Research, 2007, 67, 9528-9534.	0.9	82

#	Article	IF	CITATIONS
91	Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA. Cancer Immunology, Immunotherapy, 2007, 56, 1577-1587.	4.2	46
92	Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Letters, 2006, 236, 64-71.	7.2	71
93	Identification of new claudin family members by a novel PSI-BLAST based approach with enhanced specificity. Proteins: Structure, Function and Bioinformatics, 2006, 65, 808-815.	2.6	19
94	Expression profiling of autoimmune regulator AIRE mRNA in a comprehensive set of human normal and neoplastic tissues. Immunology Letters, 2006, 106, 172-179.	2.5	31
95	Rapid molecular dissection of viral and bacterial immunomes. European Journal of Immunology, 2006, 36, 1049-1057.	2.9	11
96	Expression of multiple epigenetically regulated cancer/germline genes in nonsmall cell lung cancer. International Journal of Cancer, 2006, 118, 2522-2528.	5.1	47
97	The human X chromosome is enriched for germline genes expressed in premeiotic germ cells of both sexes. Human Molecular Genetics, 2006, 15, 2392-2399.	2.9	24
98	Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 2006, 108, 4009-4017.	1.4	457
99	Identification of Tumor-Associated Autoantigens With SEREX., 2005, 109, 137-154.		24
100	Molecular Characterization of Virus-induced Autoantibody Responses. Journal of Experimental Medicine, 2004, 200, 637-646.	8.5	40
101	Frequent Nonrandom Activation of Germ-Line Genes in Human Cancer. Cancer Research, 2004, 64, 5988-5993.	0.9	45
102	CrELISA: a fast and robust enzyme-linked immunosorbent assay bypassing the need for purification of recombinant protein. Journal of Immunological Methods, 2004, 289, 191-199.	1,4	14
103	SeroGRID: an improved method for the rapid selection of antigens with disease related immunogenicity. Journal of Immunological Methods, 2003, 283, 261-267.	1.4	23
104	Expression of serologically identified tumor antigens in acute leukemias. Leukemia Research, 2003, 27, 655-660.	0.8	37
105	Cascades of transcriptional induction during dendritic cell maturation revealed by genomeâ€wide expression analysis. FASEB Journal, 2003, 17, 836-847.	0.5	79
106	A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene, 2002, 21, 3879-3888.	5.9	43
107	Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Research, 2002, 62, 6750-5.	0.9	84
108	Recognition of human tumors: SEREX expression cloning to identify tumour antigens., 2001,, 45-57.		4

#	Article	IF	CITATIONS
109	Expression of the Membrane-associated Carbonic Anhydrase Isozyme XII in the Human Kidney and Renal Tumors. Journal of Histochemistry and Cytochemistry, 2000, 48, 1601-1608.	2.5	113
110	Expression of a Novel Transmembrane Carbonic Anhydrase Isozyme XII in Normal Human Gut and Colorectal Tumors. American Journal of Pathology, 2000, 156, 577-584.	3.8	137
111	Characterization of DP103, a Novel DEAD Box Protein That Binds to the Epstein-Barr Virus Nuclear Proteins EBNA2 and EBNA3C. Journal of Biological Chemistry, 1999, 274, 19136-19144.	3.4	93
112	Characterization of human colon cancer antigens recognized by autologous antibodies. International Journal of Cancer, 1998, 76, 652-658.	5.1	281
113	Expression of SSX genes in human tumors. , 1998, 77, 19-23.		143
114	Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: Basis for polyvalent CT vaccine strategies., 1998, 78, 387-389.		99
115	Identification of Human Tumor Antigens Using the B-Cell Repertoire. , 1998, , 185-198.		1
116	Molecular Definition of a Novel Human Galectin Which Is Immunogenic in Patients with Hodgkin's Disease. Journal of Biological Chemistry, 1997, 272, 6416-6422.	3.4	223
117	Serological identification of human tumor antigens. Current Opinion in Immunology, 1997, 9, 709-716.	5.5	292
118	SSX: A multigene family with several members transcribed in normal testis and human cancer. International Journal of Cancer, 1997, 72, 965-971.	5.1	190