
## Terrence J Sejnowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692848/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7, 1129-1159.                                                    | 2.2  | 7,791     |
| 2  | Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 2000, 37, 163-178.                                                                  | 2.4  | 2,585     |
| 3  | A Learning Algorithm for Boltzmann Machines*. Cognitive Science, 1985, 9, 147-169.                                                                                           | 1.7  | 2,437     |
| 4  | Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 1998, 6, 160-188.                                                        | 3.6  | 1,653     |
| 5  | Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation, 1999, 11, 417-441.                   | 2.2  | 1,614     |
| 6  | Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 1996, 382, 363-366.                                                                 | 27.8 | 1,190     |
| 7  | Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2001, 2, 539-550.                                                              | 10.2 | 1,134     |
| 8  | The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 1997, 20, 537-556.                                                     | 0.7  | 1,033     |
| 9  | Learning Overcomplete Representations. Neural Computation, 2000, 12, 337-365.                                                                                                | 2.2  | 927       |
| 10 | Communication in Neuronal Networks. Science, 2003, 301, 1870-1874.                                                                                                           | 12.6 | 842       |
| 11 | Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 2000, 37, 163-178.                                                                  | 2.4  | 678       |
| 12 | Neurocomputational models of working memory. Nature Neuroscience, 2000, 3, 1184-1191.                                                                                        | 14.8 | 643       |
| 13 | Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron, 2015, 86, 1369-1384.                                                                             | 8.1  | 640       |
| 14 | Interpreting Neuronal Population Activity by Reconstruction: Unified Framework With Application to Hippocampal Place Cells. Journal of Neurophysiology, 1998, 79, 1017-1044. | 1.8  | 616       |
| 15 | Human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 2015, 523, 212-216.                                                                         | 27.8 | 605       |
| 16 | Why do we sleep?11Published on the World Wide Web on 7 November 2000 Brain Research, 2000, 886, 208-223.                                                                     | 2.2  | 466       |
| 17 | Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex.<br>Science, 2017, 357, 600-604.                                               | 12.6 | 445       |
| 18 | Independent component analysis of fMRI data: Examining the assumptions. Human Brain Mapping, 1998,<br>6, 368-372.                                                            | 3.6  | 432       |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Spatial Transformations in the Parietal Cortex Using Basis Functions. Journal of Cognitive Neuroscience, 1997, 9, 222-237.                                                                                      | 2.3  | 402       |
| 20 | Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 2018, 19, 255-268.                                                                                             | 10.2 | 368       |
| 21 | Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 2008, 9, 97-107.                                                                                                           | 10.2 | 313       |
| 22 | Measuring facial expressions by computer image analysis. Psychophysiology, 1999, 36, 253-263.                                                                                                                   | 2.4  | 308       |
| 23 | Cortical gamma band synchronization through somatostatin interneurons. Nature Neuroscience, 2017, 20, 951-959.                                                                                                  | 14.8 | 301       |
| 24 | Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces. SIAM Journal of Scientific Computing, 2008, 30, 3126-3149.                                           | 2.8  | 292       |
| 25 | Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus. Journal of Neuroscience, 1997, 17, 1179-1196.                                                                                           | 3.6  | 290       |
| 26 | Bee foraging in uncertain environments using predictive hebbian learning. Nature, 1995, 377, 725-728.                                                                                                           | 27.8 | 288       |
| 27 | Network Oscillations: Emerging Computational Principles. Journal of Neuroscience, 2006, 26, 1673-1676.                                                                                                          | 3.6  | 256       |
| 28 | Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 1996, 6, 271-280.                                                                  | 1.9  | 254       |
| 29 | Neuronal Tuning: To Sharpen or Broaden?. Neural Computation, 1999, 11, 75-84.                                                                                                                                   | 2.2  | 248       |
| 30 | Putting big data to good use in neuroscience. Nature Neuroscience, 2014, 17, 1440-1441.                                                                                                                         | 14.8 | 232       |
| 31 | The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30033-30038.                            | 7.1  | 220       |
| 32 | Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9894-9899. | 7.1  | 216       |
| 33 | Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands. Hippocampus, 2000, 10, 187-197.                                             | 1.9  | 212       |
| 34 | Metabolic cost as a unifying principle governing neuronal biophysics. Proceedings of the National<br>Academy of Sciences of the United States of America, 2010, 107, 12329-12334.                               | 7.1  | 212       |
| 35 | Nanoconnectomic upper bound on the variability of synaptic plasticity. ELife, 2015, 4, e10778.                                                                                                                  | 6.0  | 208       |
| 36 | A learning algorithm for boltzmann machines. Cognitive Science, 1985, 9, 147-169.                                                                                                                               | 1.7  | 205       |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Astrocytes contribute to gamma oscillations and recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3343-52.    | 7.1  | 203       |
| 38 | Independent Sources of Quantal Variability at Single Glutamatergic Synapses. Journal of Neuroscience, 2003, 23, 3186-3195.                                                   | 3.6  | 192       |
| 39 | A Computational Model of How the Basal Ganglia Produce Sequences. Journal of Cognitive<br>Neuroscience, 1998, 10, 108-121.                                                   | 2.3  | 186       |
| 40 | The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140164. | 4.0  | 179       |
| 41 | Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning. Neural Computation, 2001, 13, 2221-2237.                                                          | 2.2  | 173       |
| 42 | Evidence for Ectopic Neurotransmission at a Neuronal Synapse. Science, 2005, 309, 446-451.                                                                                   | 12.6 | 167       |
| 43 | A Monte Carlo Model Reveals Independent Signaling at Central Clutamatergic Synapses. Biophysical<br>Journal, 2002, 83, 2333-2348.                                            | 0.5  | 154       |
| 44 | Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. ELife, 2016, 5, .                                   | 6.0  | 151       |
| 45 | Synchrony of Thalamocortical Inputs Maximizes Cortical Reliability. Science, 2010, 328, 106-109.                                                                             | 12.6 | 144       |
| 46 | Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus.<br>Hippocampus, 2001, 11, 251-274.                                         | 1.9  | 134       |
| 47 | Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. ELife, 2018, 7,                                                                     | 6.0  | 134       |
| 48 | Spontaneous travelling cortical waves gate perception in behaving primates. Nature, 2020, 587, 432-436.                                                                      | 27.8 | 133       |
| 49 | Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. Journal of<br>Comparative Neurology, 2013, 521, 448-464.                              | 1.6  | 113       |
| 50 | Utilizing Deep Learning Towards Multi-Modal Bio-Sensing and Vision-Based Affective Computing. IEEE<br>Transactions on Affective Computing, 2022, 13, 96-107.                 | 8.3  | 112       |
| 51 | Learning to soar in turbulent environments. Proceedings of the National Academy of Sciences of the<br>United States of America, 2016, 113, E4877-84.                         | 7.1  | 110       |
| 52 | Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 1996, 6, 271-280.                               | 1.9  | 108       |
| 53 | Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biological Psychiatry, 2016, 79, 716-726.                                 | 1.3  | 103       |
| 54 | The Book of Hebb. Neuron, 1999, 24, 773-776.                                                                                                                                 | 8.1  | 98        |

4

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Complexity of calcium signaling in synaptic spines. BioEssays, 2002, 24, 1130-1144.                                                                                                                                                   | 2.5  | 94        |
| 56 | Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nature Neuroscience, 2021, 24, 129-139.                                                                                 | 14.8 | 92        |
| 57 | Cellular and Network Models for Intrathalamic Augmenting Responses During 10-Hz Stimulation.<br>Journal of Neurophysiology, 1998, 79, 2730-2748.                                                                                      | 1.8  | 91        |
| 58 | Experience Matters. Psychological Science, 2010, 21, 960-969.                                                                                                                                                                         | 3.3  | 91        |
| 59 | Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines. PLoS<br>ONE, 2008, 3, e2045.                                                                                                             | 2.5  | 89        |
| 60 | Brain-state dependent astrocytic Ca <sup>2+</sup> signals are coupled to both positive and negative<br>BOLD-fMRI signals. Proceedings of the National Academy of Sciences of the United States of America,<br>2018, 115, E1647-E1656. | 7.1  | 88        |
| 61 | Exploration bonuses and dual control. Machine Learning, 1996, 25, 5-22.                                                                                                                                                               | 5.4  | 77        |
| 62 | Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14503-14511.                             | 7.1  | 74        |
| 63 | Modelling Vesicular Release at Hippocampal Synapses. PLoS Computational Biology, 2010, 6, e1000983.                                                                                                                                   | 3.2  | 70        |
| 64 | Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. Journal of General Physiology, 2019, 151, 1017-1034.                                                                         | 1.9  | 67        |
| 65 | Gap Junction Effects on Precision and Frequency of a Model Pacemaker Network. Journal of<br>Neurophysiology, 2000, 83, 984-997.                                                                                                       | 1.8  | 65        |
| 66 | A Unifying Objective Function for Topographic Mappings. Neural Computation, 1997, 9, 1291-1303.                                                                                                                                       | 2.2  | 64        |
| 67 | Computational reconstitution of spine calcium transients from individual proteins. Frontiers in Synaptic Neuroscience, 2015, 7, 17.                                                                                                   | 2.5  | 63        |
| 68 | Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 2022, 4, 196-210.                                                                                                                               | 16.0 | 62        |
| 69 | NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nature Communications, 2021, 12, 2849.                                                             | 12.8 | 57        |
| 70 | Optimal Smoothing in Visual Motion Perception. Neural Computation, 2001, 13, 1243-1253.                                                                                                                                               | 2.2  | 54        |
| 71 | Spectrum of power laws for curved hand movements. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3950-8.                                                                                | 7.1  | 53        |
| 72 | Pharmacological reversal of synaptic and network pathology in human <i>MECP2</i> â€KO neurons and cortical organoids. EMBO Molecular Medicine, 2021, 13, e12523.                                                                      | 6.9  | 53        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain<br>disorders. ELife, 2017, 6, .                                                                                              | 6.0  | 53        |
| 74 | Simple framework for constructing functional spiking recurrent neural networks. Proceedings of the United States of America, 2019, 116, 22811-22820.                                                                              | 7.1  | 52        |
| 75 | Mitochondrial morphology provides a mechanism for energy buffering at synapses. Scientific Reports, 2019, 9, 18306.                                                                                                               | 3.3  | 52        |
| 76 | Regulating Cortical Oscillations in an Inhibition-Stabilized Network. Proceedings of the IEEE, 2014, 102, 830-842.                                                                                                                | 21.3 | 51        |
| 77 | Making smooth moves. Nature, 1998, 394, 725-726.                                                                                                                                                                                  | 27.8 | 49        |
| 78 | Selective Memory Generalization by Spatial Patterning of Protein Synthesis. Neuron, 2014, 82, 398-412.                                                                                                                            | 8.1  | 47        |
| 79 | Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14657-14662.                          | 7.1  | 46        |
| 80 | Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable<br>network dynamics. Proceedings of the National Academy of Sciences of the United States of America,<br>2013, 110, 16610-16615. | 7.1  | 43        |
| 81 | Non-Linear Dynamical Analysis of EEG Time Series Distinguishes Patients with Parkinson's Disease from<br>Healthy Individuals. Frontiers in Neurology, 2013, 4, 200.                                                               | 2.4  | 43        |
| 82 | Variational Bayesian Learning of ICA with Missing Data. Neural Computation, 2003, 15, 1991-2011.                                                                                                                                  | 2.2  | 42        |
| 83 | A Discrete Presynaptic Vesicle Cycle for Neuromodulator Receptors. Neuron, 2020, 105, 663-677.e8.                                                                                                                                 | 8.1  | 42        |
| 84 | Impairments in remote memory caused by the lack of Type 2 IP <sub>3</sub> receptors. Glia, 2019, 67, 1976-1989.                                                                                                                   | 4.9  | 41        |
| 85 | Multi-state Modeling of Biomolecules. PLoS Computational Biology, 2014, 10, e1003844.                                                                                                                                             | 3.2  | 39        |
| 86 | Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proceedings of the United States of America, 2015, 112, 2545-2550.                                                                            | 7.1  | 39        |
| 87 | Diverse Representations of Olfactory Information in Centrifugal Feedback Projections. Journal of Neuroscience, 2016, 36, 7535-7545.                                                                                               | 3.6  | 39        |
| 88 | Centrifugal Inputs to the Main Olfactory Bulb Revealed Through Whole Brain Circuit-Mapping.<br>Frontiers in Neuroanatomy, 2018, 12, 115.                                                                                          | 1.7  | 39        |
| 89 | Dendritic trafficking faces physiologically critical speed-precision tradeoffs. ELife, 2016, 5, .                                                                                                                                 | 6.0  | 39        |
| 90 | Beyond modularity: Neural evidence for constructivist principles in development. Behavioral and<br>Brain Sciences, 1994, 17, 725-726.                                                                                             | 0.7  | 38        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Geometric principles of second messenger dynamics in dendritic spines. Scientific Reports, 2019, 9, 11676.                                                                                                                      | 3.3  | 33        |
| 92  | Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells. Hippocampus, 2000, 10, 673-683.                                                                                 | 1.9  | 32        |
| 93  | Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Computation, 2021, 33, 1-44.                                                                                                                | 2.2  | 32        |
| 94  | Spatially fixed patterns account for the spike and wave features in absence seizures. Brain Topography, 1999, 12, 107-116.                                                                                                      | 1.8  | 30        |
| 95  | A Wearable Multi-Modal Bio-Sensing System Towards Real-World Applications. IEEE Transactions on Biomedical Engineering, 2019, 66, 1137-1147.                                                                                    | 4.2  | 29        |
| 96  | Learning viewpoint-invariant face representations from visual experience in an attractor network.<br>Network: Computation in Neural Systems, 1998, 9, 399-417.                                                                  | 3.6  | 29        |
| 97  | Blending computational and experimental neuroscience. Nature Reviews Neuroscience, 2016, 17, 667-668.                                                                                                                           | 10.2 | 27        |
| 98  | Cortical chimera states predict epileptic seizures. Chaos, 2019, 29, 121106.                                                                                                                                                    | 2.5  | 27        |
| 99  | Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states. Nature Communications, 2021, 12, 6057.                                                 | 12.8 | 27        |
| 100 | Parallel Fiber Coding in the Cerebellum for Life-Long Learning. Autonomous Robots, 2001, 11, 291-297.                                                                                                                           | 4.8  | 26        |
| 101 | A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29872-29882. | 7.1  | 26        |
| 102 | The ventral striatum dissociates information expectation, reward anticipation, and reward receipt.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>15200-15208.               | 7.1  | 26        |
| 103 | Learning viewpoint-invariant face representations from visual experience in an attractor network.<br>Network: Computation in Neural Systems, 1998, 9, 399-417.                                                                  | 3.6  | 25        |
| 104 | Self–organizing neural systems based on predictive learning. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2003, 361, 1149-1175.                                                    | 3.4  | 25        |
| 105 | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling. PLoS Computational Biology, 2014, 10, e1003855.                                                      | 3.2  | 25        |
| 106 | Multi-modal Approach for Affective Computing. , 2018, 2018, 291-294.                                                                                                                                                            |      | 25        |
| 107 | Electrocardiogram classification using delay differential equations. Chaos, 2013, 23, 023132.                                                                                                                                   | 2.5  | 24        |
| 108 | VolRoverN: Enhancing Surface and Volumetric Reconstruction for Realistic Dynamical Simulation of Cellular and Subcellular Function. Neuroinformatics, 2014, 12, 277-289.                                                        | 2.8  | 23        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS<br>Computational Biology, 2018, 14, e1006171.                                                                    | 3.2  | 23        |
| 110 | Simulations of a Reconstructed Cerebellar Purkinje Cell Based on Simplified Channel Kinetics. Neural Computation, 1991, 3, 321-332.                                                                               | 2.2  | 22        |
| 111 | Place Cell Rate Remapping by CA3 Recurrent Collaterals. PLoS Computational Biology, 2014, 10, e1003648.                                                                                                           | 3.2  | 21        |
| 112 | Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3847-3852.                             | 7.1  | 21        |
| 113 | Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes.<br>Frontiers in Neurology, 2013, 4, 182.                                                                    | 2.4  | 20        |
| 114 | Objective, computerized video-based rating of blepharospasm severity. Neurology, 2016, 87, 2146-2153.                                                                                                             | 1.1  | 20        |
| 115 | Interpretation of the Precision Matrix and Its Application in Estimating Sparse Brain Connectivity<br>during Sleep Spindles from Human Electrocorticography Recordings. Neural Computation, 2017, 29,<br>603-642. | 2.2  | 20        |
| 116 | Top-Down Inputs Enhance Orientation Selectivity in Neurons of the Primary Visual Cortex during Perceptual Learning. PLoS Computational Biology, 2014, 10, e1003770.                                               | 3.2  | 18        |
| 117 | Structured networks support sparse traveling waves in rodent somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5277-5282.                         | 7.1  | 18        |
| 118 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. PLoS Computational Biology, 2020, 16, e1008015.                                                              | 3.2  | 18        |
| 119 | Diversity-enabled sweet spots in layered architectures and speed–accuracy trade-offs in sensorimotor control. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .       | 7.1  | 18        |
| 120 | Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude<br>Coupling. Neural Computation, 2015, 27, 2477-2509.                                                                | 2.2  | 17        |
| 121 | MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework. Methods in Molecular<br>Biology, 2019, 1945, 203-229.                                                                                     | 0.9  | 17        |
| 122 | The Population Tracking Model: A Simple, Scalable Statistical Model for Neural Population Data.<br>Neural Computation, 2017, 29, 50-93.                                                                           | 2.2  | 16        |
| 123 | Exploration Bonuses and Dual Control. Machine Learning, 1996, 25, 5-22.                                                                                                                                           | 5.4  | 15        |
| 124 | Synapses get smarter. Nature, 1996, 382, 759-760.                                                                                                                                                                 | 27.8 | 15        |
| 125 | Predictive Learning of Temporal Sequences in Recurrent Neocortical Circuits. Novartis Foundation Symposium, 2008, 239, 208-233.                                                                                   | 1.1  | 15        |
| 126 | Neural Networks: Sleep and memory. Current Biology, 1995, 5, 832-834.                                                                                                                                             | 3.9  | 14        |

Terrence J Sejnowski

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Impact of Affective Multimedia Content on the Electroencephalogram and Facial Expressions.<br>Scientific Reports, 2019, 9, 16295.                                                                    | 3.3  | 14        |
| 128 | Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.<br>Network: Computation in Neural Systems, 1998, 9, 333-344.                                        | 3.6  | 14        |
| 129 | Model reduction for stochastic CaMKII reaction kinetics in synapses by graph-constrained correlation dynamics. Physical Biology, 2015, 12, 045005.                                                   | 1.8  | 13        |
| 130 | Differential Covariance: A New Class of Methods to Estimate Sparse Connectivity from Neural Recordings. Neural Computation, 2017, 29, 2581-2632.                                                     | 2.2  | 13        |
| 131 | Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data. Neural<br>Computation, 2017, 29, 3181-3218.                                                                       | 2.2  | 13        |
| 132 | A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Computational Biology, 2019, 15, e1006941.                                    | 3.2  | 13        |
| 133 | Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 1998, 6, 160-188.                                                                                | 3.6  | 13        |
| 134 | Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.<br>Network: Computation in Neural Systems, 1998, 9, 333-344.                                        | 3.6  | 12        |
| 135 | Time-coded neurotransmitter release at excitatory and inhibitory synapses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1108-15.                     | 7.1  | 12        |
| 136 | Constraining constructivism: Cortical and sub-cortical constraints on learning in development.<br>Behavioral and Brain Sciences, 2000, 23, 785-791.                                                  | 0.7  | 11        |
| 137 | Causality detection in cortical seizure dynamics using cross-dynamical delay differential analysis.<br>Chaos, 2019, 29, 101103.                                                                      | 2.5  | 11        |
| 138 | Geometry unites synchrony, chimeras, and waves in nonlinear oscillator networks. Chaos, 2022, 32, 031104.                                                                                            | 2.5  | 11        |
| 139 | Dynamical differential covariance recovers directional network structure in multiscale neural systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1  | 11        |
| 140 | Prospective Optimization. Proceedings of the IEEE, 2014, 102, 799-811.                                                                                                                               | 21.3 | 10        |
| 141 | Delay Differential Analysis of Electroencephalographic Data. Neural Computation, 2015, 27, 615-627.                                                                                                  | 2.2  | 10        |
| 142 | Conservation law for self-paced movements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8831-8836.                                                    | 7.1  | 10        |
| 143 | Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake<br>Efficiency. ENeuro, 2018, 5, ENEURO.0298-17.2017.                                                        | 1.9  | 10        |
| 144 | Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. ELife, 0, 11, .                                               | 6.0  | 10        |

| #   | Article                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network<br>Dynamics. Cerebral Cortex, 2021, 31, 826-844.                      | 2.9  | 9         |
| 146 | Toward a Semi-Self-Paced EEG Brain Computer Interface: Decoding Initiation State from Non-Initiation State in Dedicated Time Slots. PLoS ONE, 2014, 9, e88915.          | 2.5  | 9         |
| 147 | Identifying Transport Behavior of Single-Molecule Trajectories. Biophysical Journal, 2014, 107, 2345-2351.                                                              | 0.5  | 7         |
| 148 | Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates. Journal of Neurophysiology, 2015, 113, 1217-1233.        | 1.8  | 7         |
| 149 | The nucleus does not significantly affect the migratory trajectories of amoeba in two-dimensional environments. Scientific Reports, 2019, 9, 16369.                     | 3.3  | 7         |
| 150 | Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. , 0, .                                                  |      | 7         |
| 151 | Emerging principles of spacetime in brains: Meeting report on spatial neurodynamics. Neuron, 2022, 110, 1894-1898.                                                      | 8.1  | 7         |
| 152 | Efficient Multiscale Models of Polymer Assembly. Biophysical Journal, 2016, 111, 185-196.                                                                               | 0.5  | 6         |
| 153 | Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice. PLoS ONE, 2018, 13, e0193446.                                  | 2.5  | 6         |
| 154 | Characterizing Brain Connectivity From Human Electrocorticography Recordings With Unobserved Inputs During Epileptic Seizures. Neural Computation, 2019, 31, 1271-1326. | 2.2  | 6         |
| 155 | The Computational Self. Annals of the New York Academy of Sciences, 2003, 1001, 262-271.                                                                                | 3.8  | 5         |
| 156 | Heterogeneity of Preictal Dynamics in Human Epileptic Seizures. IEEE Access, 2020, 8, 52738-52748.                                                                      | 4.2  | 5         |
| 157 | Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory<br>Pathways. Journal of Neuroscience, 2019, 39, 7674-7688.                    | 3.6  | 4         |
| 158 | Dynamical ergodicity DDA reveals causal structure in time series. Chaos, 2021, 31, 103108.                                                                              | 2.5  | 4         |
| 159 | In Memoriam. Neuron, 2004, 43, 619-621.                                                                                                                                 | 8.1  | 3         |
| 160 | The Hippocampus Review. Science, 2007, 317, 44-45.                                                                                                                      | 12.6 | 3         |
| 161 | Consequences of non-uniform active currents in dendrites. Frontiers in Neuroscience, 2009, 3, 332-3.                                                                    | 2.8  | 3         |
| 162 | Vernon Mountcastle: Father of neuroscience. Proceedings of the National Academy of Sciences of the<br>United States of America, 2015, 112, 6523-6524.                   | 7.1  | 3         |

| #   | Article                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Decision-making neural circuits mediating social behaviors. Journal of Computational Neuroscience, 2017, 43, 127-142.                                         | 1.0  | 3         |
| 164 | Independent component analysis of fMRI data: Examining the assumptions. , 1998, 6, 368.                                                                       |      | 3         |
| 165 | Learning the Synaptic and Intrinsic Membrane Dynamics Underlying Working Memory in Spiking Neural<br>Network Models. Neural Computation, 2021, 33, 3264-3287. | 2.2  | 3         |
| 166 | Multivariate spectral analysis of electroencephalography data. , 2013, , .                                                                                    |      | 2         |
| 167 | Consciousness. Daedalus, 2015, 144, 123-132.                                                                                                                  | 1.8  | 2         |
| 168 | Analysis of fMRI data by blind separation into independent spatial components. , 1998, 6, 160.                                                                |      | 2         |
| 169 | Multiscale modeling of presynaptic dynamics from molecular to mesoscale. PLoS Computational Biology, 2022, 18, e1010068.                                      | 3.2  | 2         |
| 170 | What is consolidated during sleep-dependent motor skill learning?. Behavioral and Brain Sciences, 2005, 28, 70-71.                                            | 0.7  | 1         |
| 171 | Summary: Cognition in 2014: Figure 1 Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 237-241.                                                  | 1.1  | 1         |
| 172 | Street View of the Cognitive Map. Cell, 2016, 164, 13-15.                                                                                                     | 28.9 | 1         |
| 173 | PERCEPTIONS OF SCIENCE: Tap into Science 24-7. Science, 2003, 301, 601-601.                                                                                   | 12.6 | 0         |
| 174 | Horace Barlow: a vision scientist for the ages. Biological Cybernetics, 2021, 115, 115-116.                                                                   | 1.3  | 0         |
| 175 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |
| 176 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |
| 177 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |
| 178 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |
| 179 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |
| 180 | Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. , 2020, 16, e1008015.                                    |      | 0         |