Luana Bagnoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692705/publications.pdf

Version: 2024-02-01

147801 233421 2,735 99 31 45 citations h-index g-index papers 118 118 118 1765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. Journal of Medicinal Chemistry, 2015, 58, 9601-9614.	6.4	175
2	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds. Angewandte Chemie - International Edition, 2003, 42, 3131-3133.	13.8	120
3	Preparation of a New Chiral Non-Racemic Sulfur-Containing Diselenide and Applications in Asymmetric Synthesis. Chemistry - A European Journal, 2002, 8, 1118.	3.3	114
4	New nitrogen containing chiral diselenides: synthesis and asymmetric addition reactions to olefins. Tetrahedron: Asymmetry, 2000, 11, 4645-4650.	1.8	81
5	Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68, 10530-10535.	1.9	76
6	Selenium Catalyzed Oxidation of Aldehydes: Green Synthesis of Carboxylic Acids and Esters. Molecules, 2015, 20, 10496-10510.	3.8	67
7	Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Letters, 2000, 41, 3241-3245.	1.4	59
8	Synthesis of Enantiopure 1,4â€Dioxanes, Morpholines, and Piperazines from the Reaction of Chiral 1,2â€Diols, Amino Alcohols, and Diamines with Vinyl Selenones. Chemistry - A European Journal, 2011, 17, 993-999.	3.3	59
9	A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity. Organic and Biomolecular Chemistry, 2016, 14, 2015-2024.	2.8	57
10	Asymmetric selenomethoxylation of alkenes with camphorselenenyl sulfate. Tetrahedron Letters, 1998, 39, 2809-2812.	1.4	55
11	Efficient asymmetric selenocyclizations of alkenyl oximes into cyclic nitrones and 1,2-oxazines promoted by sulfur containing diselenides. Tetrahedron: Asymmetry, 2001, 12, 3297-3304.	1.8	54
12	Asymmetric oxyselenenylation–deselenenylation reactions of alkenes induced by camphor diselenide and ammonium persulfate. A convenient one-pot synthesis of enantiomerically enriched allylic alcohols and ethers. Tetrahedron: Asymmetry, 1999, 10, 747-757.	1.8	49
13	New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules, 2022, 27, 1643.	3.8	48
14	Ring-closure reactions of alkenyl oximes induced by persulfate anion oxidation of diphenyl diselenide. Formation of $1,2$ -oxazines and cyclic nitrones. Journal of the Chemical Society Perkin Transactions $1,1993,1989$.	0.9	45
15	A sulfur-containing diselenide as an efficient chiral reagent in asymmetric selenocyclization reactions. Tetrahedron: Asymmetry, 2001, 12, 1493-1502.	1.8	45
16	Optically active isoxazolidines and 1,3-amino alcohols by asymmetric selenocyclization reactions of O-allyl oximes. Tetrahedron: Asymmetry, 2001, 12, 3053-3059.	1.8	44
17	Seleno-Functionalization of Quercetin Improves the Non-Covalent Inhibition of Mpro and Its Antiviral Activity in Cells against SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 7048.	4.1	44
18	Synthesis of enantiomerically enriched \hat{l}^2 -hydroxy selenides by catalytic asymmetric ring opening of meso-epoxides with (phenylseleno)silanes. Tetrahedron, 2008, 64, 3337-3342.	1.9	41

#	Article	IF	CITATIONS
19	Ring-Closure Reactions through Intramolecular Displacement of the Phenylselenonyl Group by Nitrogen Nucleophiles: A New Stereospecific Synthesis of N-Tosyl and N-Benzoyl-1,3-oxazolidin-2-ones from 1 ² -Hydroxyalkyl Phenyl Selenides. Chemistry - A European Journal, 2004, 10, 1752-1764.	3.3	40
20	A Chiral Electrophilic Selenium Reagent To Promote the Kinetic Resolution of Racemic Allylic Alcohols. Organic Letters, 2004, 6, 4751-4753.	4.6	40
21			

#	Article	IF	CITATIONS
37	Selenium-promoted synthesis of enantiomerically pure substituted morpholines starting from alkenes and chiral aminoalcohols. Tetrahedron: Asymmetry, 2003, 14, 2651-2657.	1.8	29
38	Synthesis of enantiomerically pure perhydrofuro [3,4-b] pyrans and perhydrofuro [3,4-b] furans. Tetrahedron: Asymmetry, 2004, 15, 1949-1955.	1.8	28
39	Selenium-induced cyclization of O-allyl oximes as a synthetic route to N-alkyl isoxazolidines. Tetrahedron, 1995, 51, 1277-1284.	1.9	27
40	Title is missing!. Angewandte Chemie, 2003, 115, 3239-3241.	2.0	27
41	Diastereoselective Synthesis of Hexahydro-3 <i>H</i> -pyrrolyzin-3-ones through Pd-Catalyzed Carboamination. Journal of Organic Chemistry, 2010, 75, 2134-2137.	3.2	27
42	Advances in Electrophilic Organochalcogen Reagents. Current Organic Chemistry, 2015, 20, 122-135.	1.6	27
43	Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective. Molecules, 2017, 22, 2124.	3.8	26
44	Intramolecular addition of carbon radicals to aldehydes: synthesis of enantiopure tetrahydrofuran-3-ols. Tetrahedron, 2007, 63, 5482-5489.	1.9	25
45	Organoselenium mediated asymmetric cyclizations. Synthesis of enantiomerically pure 1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry, 2006, 17, 2768-2774.	1.8	24
46	A Recyclable Biphasic System for Stereoselective and Easily Handled Hydrochalcogenations. European Journal of Organic Chemistry, 2014, 2014, 5968-5975.	2.4	24
47	Water and Aqueous Mixtures as Convenient Alternative Media for Organoselenium Chemistry. Molecules, 2016, 21, 1482.	3.8	24
48	Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals, 2020, 13, 211.	3.8	24
49	Pyrrolidinamine, piperidinamine and tetrahydropyridazine derivatives from selenium promoted cyclization of alkenyl phenylhydrazones. Tetrahedron, 1997, 53, 7311-7318.	1.9	23
50	Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules, 2020, 25, 5907.	3.8	23
51	Phenylselenenyl sulfate induced cyclization of allylhydrazines. Synthesis of pyrazole derivatives. Tetrahedron, 1997, 53, 4441-4446.	1.9	22
52	Asymmetric Syntheses Promoted by Organoselenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 729-740.	1.6	22
53	Oxoneâ€Mediated Oxidation of Vinyl Selenides in Water. European Journal of Organic Chemistry, 2018, 2018, 3914-3919.	2.4	22
54	Factors controlling the selenium-induced cyclizations of alkenyl hydrazines to pyridazine or pyrrolidinamine derivatives. Tetrahedron, 1997, 53, 10591-10602.	1.9	21

#	Article	IF	CITATIONS
55	Asymmetric Selenohydroxylation of Alkenes with Camphorselenenyl Sulfate. European Journal of Organic Chemistry, 1998, 1998, 2275-2277.	2.4	21
56	Synthesis of enantiomerically pure \hat{l}^2 -azidoselenides starting from natural terpenes. Tetrahedron, 2007, 63, 12373-12378.	1.9	21
57	One-Pot Conversion of Alkenes into Oxazolines and Oxazolidin-2-Ones Promoted by Diphenyl Diselenide. Synthetic Communications, 1997, 27, 4131-4140.	2.1	20
58	Synthesis of \hat{I}^3 -lactams via a domino Michael addition/cyclization reaction of vinyl selenone with substituted amides. Tetrahedron Letters, 2013, 54, 6755-6757.	1.4	20
59	Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem, 2018, 13, 270-279.	3.2	20
60	Asymmetric aldol reactions from titanium enolates of \hat{l}_{\pm} -seleno ketones and esters. Tetrahedron: Asymmetry, 2004, 15, 783-791.	1.8	19
61	Synthesis of enantiomerically pure perhydrofuro[2,3-b]furans. Tetrahedron: Asymmetry, 2005, 16, 2429-2435.	1.8	19
62	Alkenyl nitrones cyclizations induced by phenylselenenyl bromide. A convenient synthetic route to 1,2-oxazines. Tetrahedron, 1996, 52, 6811-6822.	1.9	17
63	Electrophilic 2-Thienylselenenylation of Thiophene. Preparation of Oligo(seleno-2,5-thienylenes). Tetrahedron, 2000, 56, 3255-3260.	1.9	17
64	Recent advances in the chemistry of vinylchalcogenides. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 235-244.	1.6	16
65	Conjugated Additions of Selenium Containing Enolates to Enones - Enantioselective Synthesis of ?-Oxo-?-Seleno Esters and Their Facile Transformations. European Journal of Organic Chemistry, 2005, 2005, 543-551.	2.4	15
66	Short Synthesis of (R)- and (S)-4-Amino-3-Hydroxybutyric Acid (GABOB). Synthesis, 2005, 2005, 579-582.	2.3	15
67	Selenium-promoted synthesis of enantiopure octahydroindolizines, hexahydro-1H-pyrrolizines and hexahydro-3H-pyrrolizin-3-ones. Tetrahedron: Asymmetry, 2008, 19, 2411-2416.	1.8	15
68	Selenium Promoted Stereospecific One-Pot Conversion Of Cinnamyl Derivatives Into Oxazoleses. A Simple Synthetic Route To Racemic Taxol Side Chain. Synthetic Communications, 1999, 29, 1773-1778.	2.1	14
69	A domino approach to pyrazino- indoles and pyrroles using vinyl selenones. Tetrahedron, 2018, 74, 7156-7163.	1.9	14
70	Synthesis of Spirooxindole Oxetanes Through a Domino Reaction of 3-Hydroxyoxindoles and Phenyl Vinyl Selenone. European Journal of Organic Chemistry, 2019, 2019, 5396-5401.	2.4	14
71	A three-component [3 + 2]-cycloaddition/elimination cascade for the synthesis of spirooxindole-pyrrolizines. Organic and Biomolecular Chemistry, 2021, 19, 667-676.	2.8	13
72	Synthesis of selenoxides by oxidation of selenides with superoxide radical anions and 2-nitrobenzenesulfonyl chloride. Tetrahedron Letters, 2005, 46, 5165-5168.	1.4	12

#	Article	IF	Citations
73	Synthesis of \hat{I}^3 - and \hat{I} -Lactones from Alkynols. Synlett, 2006, 2006, 0587-0590.	1.8	11
74	Synthesis of Thiol Esters Using PhSZnBr as Sulfenylating Agent: A DFTâ€Guided Optimization of Reaction Conditions. European Journal of Organic Chemistry, 2016, 2016, 2999-3005.	2.4	11
75	Synthesis of a Structural Analogue of the Repeating Unit from ⟨i⟩Streptococcus pneumoniae⟨ i⟩ 19F Capsular Polysaccharide Based on the Cross-Metathesis–Selenocyclization Reaction Sequence. Journal of Organic Chemistry, 2013, 78, 5172-5183.	3.2	10
76	Synthesis of oxazino [4,3-a] indoles by domino addition-cyclization reactions of (1H-indol-2-yl) methanols and vinyl selenones in the presence of 18-crown-6. Tetrahedron, 2016, 72, 7059-7064.	1.9	10
77	Solvent-free, uncatalyzed asymmetric "ene―reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: a general approach to enantiomerically pure α-(trifluoromethyl)tryptamines. Organic and Biomolecular Chemistry, 2017, 15, 3930-3937.	2.8	10
78	Selenium Catalyzed Conversion of d-Phenyl-g-alkenyl Oximes into 2-Phenylpyridines. Heterocycles, 1996, 43, 2679.	0.7	10
79	A simple synthesis of (R)-3-aminooctanoic acid (D-BAOA) from (S)-1-octyn-3-ol. Tetrahedron Letters, 2007, 48, 4343-4345.	1.4	9
80	"On-water―thiolysis of epoxides promoted by PhSZnBr. Journal of Sulfur Chemistry, 2013, 34, 671-676.	2.0	9
81	Kinetic Resolution of Allylic Alcohols Promoted by Electrophilic Selenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1071-1075.	1.6	8
82	Reaction of Acyl Chlorides with <i>In Situ </i> Formed Zinc Selenolates: Synthesis of Selenoesters <i>versus </i> Ring-Opening Reaction of Tetrahydrofuran. Journal of Chemistry, 2016, 2016, 1-8.	1.9	8
83	Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes. Molecules, 2017, 22, 391.	3.8	4
84	A Chiral Electrophilic Selenium Reagent to Promote the Kinetic Resolution of Racemic Allylic Alcohols ChemInform, 2005, 36, no.	0.0	1
85	Condensation of 2-aminomethylaniline with aldehydes and ketones for the fast one-pot synthesis of a library of 1,2,3,4-tetrahydroquinazolines under flow conditions. Chemistry of Heterocyclic Compounds, 2018, 54, 478-481.	1.2	1
86	Synthesis and biological evaluation of new indole and pyrrole carboxamides based on amino acids. Arkivoc, 2020, 2019, 163-175.	0.5	1
87	Organoselenium Chemistry: after 200 years the "Gold Rush" is still open ., 0,,.		1
88	Simple Zn-Mediated Seleno- and Thio-Functionalization of Steroids at C-1 Position. International Journal of Molecular Sciences, 2022, 23, 3022.	4.1	1
89	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds ChemInform, 2003, 34, no.	0.0	0
90	Selenium-Promoted Synthesis of Enantiomerically Pure Substituted Morpholines Starting from Alkenes and Chiral Aminoalcohols ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	Citations
91	Synthesis of Enantiomerically Pure Perhydrofuro[3,4-b]pyrans and Perhydrofuro[3,4-b]furans ChemInform, 2004, 35, no.	0.0	O
92	Synthesis of Substituted Se-Phenyl Selenocarboxylates from Terminal Alkynes ChemInform, 2004, 35, no.	0.0	0
93	Conjugated Additions of Selenium Containing Enolates to Enones — Enantioselective Synthesis of Î-Oxo-l±-Seleno Esters and Their Facile Transformations ChemInform, 2005, 36, no.	0.0	0
94	Short Synthesis of (R)- and (S)-4-Amino-3-hydroxybutyric Acid (GABOB) ChemInform, 2005, 36, no.	0.0	0
95	Synthesis of Selenoxides by Oxidation of Selenides with Superoxide Radical Anions and 2-Nitrobenzenesulfonyl Chloride ChemInform, 2005, 36, no.	0.0	0
96	Synthesis of Enantiomerically Pure Perhydrofuro [2,3-b] furans ChemInform, 2005, 36, no.	0.0	0
97	Synthesis of Pyrrolidinols by Radical Additions to Carbonyls Groups. Proceedings (mdpi), 2019, 41, 20.	0.2	0
98	Kinetic resolution of 2-methoxycarbonylalk-3-enols through a stereoselective cyclofunctionalization promoted by an enantiomerically pure electrophilic selenium reagent. Arkivoc, 2017, 2017, 303-312.	0.5	0
99	Synthesis of organochalcogens: use of nonconventional solvents/reaction media., 2022,, 147-192.		0