## Guo-Cheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269270/publications.pdf Version: 2024-02-01



CUO-CHENC WU

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Primal–Dual Fixed Point Algorithms Based on Adapted Metric for Distributed Optimization. IEEE<br>Transactions on Neural Networks and Learning Systems, 2023, 34, 2923-2937.                                          | 7.2 | 6         |
| 2  | Non-equidistant partition predictor–corrector method for fractional differential equations with<br>exponential memory. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24,<br>1109-1121. | 0.4 | 1         |
| 3  | New semi-analytical solutions of the time-fractional Fokker–Planck equation by the neural network<br>method. Optik, 2022, 259, 168896.                                                                               | 1.4 | 7         |
| 4  | A Note on Function Space and Boundedness of the General Fractional Integral in Continuous Time<br>Random Walk. Journal of Nonlinear Mathematical Physics, 2022, 29, 95-102.                                          | 0.8 | 31        |
| 5  | Distributed Nesterov Gradient and Heavy-Ball Double Accelerated Asynchronous Optimization. IEEE<br>Transactions on Neural Networks and Learning Systems, 2021, 32, 5723-5737.                                        | 7.2 | 17        |
| 6  | Discrete fractional calculus for interval–valued systems. Fuzzy Sets and Systems, 2021, 404, 141-158.                                                                                                                | 1.6 | 51        |
| 7  | Fractional calculus with exponential memory. Chaos, 2021, 31, 031103.                                                                                                                                                | 1.0 | 15        |
| 8  | Spline collocation methods for systems of fuzzy fractional differential equations. Chaos, Solitons and Fractals, 2020, 131, 109510.                                                                                  | 2.5 | 68        |
| 9  | Variable-order fractional discrete-time recurrent neural networks. Journal of Computational and<br>Applied Mathematics, 2020, 370, 112633.                                                                           | 1.1 | 114       |
| 10 | Fractional q-deformed chaotic maps: A weight function approach. Chaos, 2020, 30, 121106.                                                                                                                             | 1.0 | 26        |
| 11 | Short memory fractional differential equations for new memristor and neural network design.<br>Nonlinear Dynamics, 2020, 100, 3611-3623.                                                                             | 2.7 | 84        |
| 12 | New fractional signal smoothing equations with short memory and variable order. Optik, 2020, 218, 164507.                                                                                                            | 1.4 | 53        |
| 13 | Collocation methods for terminal value problems of tempered fractional differential equations.<br>Applied Numerical Mathematics, 2020, 156, 385-395.                                                                 | 1.2 | 69        |
| 14 | New variable-order fractional chaotic systems for fast image encryption. Chaos, 2019, 29, 083103.                                                                                                                    | 1.0 | 185       |
| 15 | Numerical solutions of interval-valued fractional nonlinear differential equations. European<br>Physical Journal Plus, 2019, 134, 1.                                                                                 | 1.2 | 13        |
| 16 | Positive solutions of fractional differential equations with the Riesz space derivative. Applied Mathematics Letters, 2019, 95, 59-64.                                                                               | 1.5 | 17        |
| 17 | Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies. Applied Mathematics and Computation, 2019, 357, 88-106.      | 1.4 | 9         |
| 18 | Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique.<br>Nonlinear Analysis: Modelling and Control, 2019, 24, .                                                   | 1.1 | 23        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A novel shuffling technique based on fractional chaotic maps. Optik, 2018, 168, 553-562.                                                                                                     | 1.4 | 25        |
| 20 | Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Applied<br>Mathematics Letters, 2018, 82, 71-78.                                                | 1.5 | 62        |
| 21 | A High-Order Accurate Numerical Scheme for the Caputo Derivative with Applications to Fractional Diffusion Problems. Numerical Functional Analysis and Optimization, 2018, 39, 600-622.      | 0.6 | 30        |
| 22 | Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 166-175. | 1.2 | 22        |
| 23 | Lattice fractional diffusion equation of random order. Mathematical Methods in the Applied Sciences, 2017, 40, 6054-6060.                                                                    | 1.2 | 5         |
| 24 | Semi-conjugacies between <i>m</i> -horseshoe maps and <i>n</i> -horseshoe maps. Journal of Difference<br>Equations and Applications, 2017, 23, 1458-1468.                                    | 0.7 | 0         |
| 25 | Nonoverlapping Schwarz Waveform Relaxation Algorithm for a Class of Time-Fractional Heat<br>Equations. Fundamenta Informaticae, 2017, 151, 231-240.                                          | 0.3 | 1         |
| 26 | Lyapunov functions for Riemann–Liouville-like fractional difference equations. Applied Mathematics<br>and Computation, 2017, 314, 228-236.                                                   | 1.4 | 125       |
| 27 | Existence results of fractional differential equations with Riesz–Caputo derivative. European<br>Physical Journal: Special Topics, 2017, 226, 3411-3425.                                     | 1.2 | 26        |
| 28 | Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials. Thermal Science, 2017, 21, 813-817.                                                                      | 0.5 | 7         |
| 29 | Chaos Synchronization of the Fractional Rucklidge System based on New Adomian Polynomials.<br>Journal of Applied Nonlinear Dynamics, 2017, 6, 379-385.                                       | 0.1 | 4         |
| 30 | Riesz Riemann–Liouville difference on discrete domains. Chaos, 2016, 26, 084308.                                                                                                             | 1.0 | 33        |
| 31 | New Adomian solutions for two point value problems of fractional order. , 2016, , .                                                                                                          |     | 0         |
| 32 | Chaos synchronization of fractional chaotic maps based on the stability condition. Physica A:<br>Statistical Mechanics and Its Applications, 2016, 460, 374-383.                             | 1.2 | 159       |
| 33 | Image encryption technique based on fractional chaotic time series. JVC/Journal of Vibration and Control, 2016, 22, 2092-2099.                                                               | 1.5 | 68        |
| 34 | Discrete Fractional Diffusion Equation of Chaotic Order. International Journal of Bifurcation and<br>Chaos in Applied Sciences and Engineering, 2016, 26, 1650013.                           | 0.7 | 17        |
| 35 | Quadratic spline collocation method for the time fractional subdiffusion equation. Applied Mathematics and Computation, 2016, 276, 252-265.                                                  | 1.4 | 34        |
| 36 | Mittag-Leffler function for discrete fractional modelling. Journal of King Saud University - Science, 2016, 28, 99-102.                                                                      | 1.6 | 29        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Recent Theory and Applications on Numerical Algorithms and Special Functions. Abstract and Applied Analysis, 2015, 2015, 1-1.                                               | 0.3 | 0         |
| 38 | Variational iteration method as a kernel constructive technique. Applied Mathematical Modelling, 2015, 39, 4378-4384.                                                       | 2.2 | 16        |
| 39 | Discrete fractional diffusion equation. Nonlinear Dynamics, 2015, 80, 281-286.                                                                                              | 2.7 | 61        |
| 40 | Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Physica A: Statistical<br>Mechanics and Its Applications, 2015, 438, 335-339.                  | 1.2 | 64        |
| 41 | Reprint of: Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2015, 107, 444-447.                                                           | 2.1 | 7         |
| 42 | Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 2015, 80, 1697-1703.                                                                                | 2.7 | 122       |
| 43 | Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Communications in<br>Nonlinear Science and Numerical Simulation, 2015, 22, 95-100.        | 1.7 | 110       |
| 44 | Several Fractional Differences and Their Applications to Discrete Maps. Journal of Applied Nonlinear Dynamics, 2015, 4, 339-348.                                            | 0.1 | 11        |
| 45 | Recent Advances on Methods and Applications of Nonlinear Differential Equations. Mathematical Problems in Engineering, 2014, 2014, 1-1.                                     | 0.6 | 0         |
| 46 | Discrete chaos in fractional sine and standard maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 484-487.                               | 0.9 | 119       |
| 47 | Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 2014, 75, 283-287.                                                                                      | 2.7 | 383       |
| 48 | Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2014, 102, 96-99.                                                                         | 2.1 | 168       |
| 49 | Variational iteration method for fractional calculus - a universal approach by Laplace transform.<br>Advances in Difference Equations, 2013, 2013, .                        | 3.5 | 82        |
| 50 | Variational iteration method $\hat{a} \in$ a promising technique for constructing equivalent integral equations of fractional order. Open Physics, 2013, 11, .              | 0.8 | 3         |
| 51 | Challenge in the variational iteration method – A new approach to identification of the Lagrange multipliers. Journal of King Saud University - Science, 2013, 25, 175-178. | 1.6 | 35        |
| 52 | Variational iteration method for the Burgers' flow with fractional derivatives—New Lagrange<br>multipliers. Applied Mathematical Modelling, 2013, 37, 6183-6190.            | 2.2 | 128       |
| 53 | New applications of the variational iteration method - from differential equations to q-fractional difference equations. Advances in Difference Equations, 2013, 2013, .    | 3.5 | 50        |
| 54 | A numerical method and efficient preconditioner for generalized airfoil equations. Applied Mathematics and Computation, 2013, 219, 11451-11459.                             | 1.4 | 0         |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | VARIATIONAL ITERATION METHOD FOR SUBDIFFUSION EQUATIONS WITH THE RIEMANN-LIOUVILLE DERIVATIVES. Heat Transfer Research, 2013, 44, 409-415.                                                | 0.9 | 2         |
| 56 | VARIATIONAL ITERATION METHOD FOR THE q-DIFFUSION EQUATIONS ON TIME SCALES. Heat Transfer Research, 2013, 44, 393-398.                                                                     | 0.9 | 2         |
| 57 | Solitary-Solution Formulation for Differential-Difference Equations Using an Ancient Chinese<br>Algorithm. Abstract and Applied Analysis, 2012, 2012, 1-6.                                | 0.3 | 3         |
| 58 | Variational Iteration Method for <i>q</i> -Difference Equations of Second Order. Journal of Applied<br>Mathematics, 2012, 2012, 1-5.                                                      | 0.4 | 13        |
| 59 | Variational iteration method for solving the time-fractional diffusion equations in porous medium.<br>Chinese Physics B, 2012, 21, 120504.                                                | 0.7 | 24        |
| 60 | Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets. Chinese Physics<br>Letters, 2012, 29, 060505.                                                                | 1.3 | 5         |
| 61 | Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations. Thermal Science, 2012, 16, 1257-1261.                   | 0.5 | 29        |
| 62 | Adomian decomposition method for non-smooth initial value problems. Mathematical and Computer<br>Modelling, 2011, 54, 2104-2108.                                                          | 2.0 | 39        |
| 63 | A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2011, 375, 3659-3663.           | 0.9 | 13        |
| 64 | A fractional characteristic method for solving fractional partial differential equations. Applied<br>Mathematics Letters, 2011, 24, 1046-1050.                                            | 1.5 | 28        |
| 65 | A fractional variational iteration method for solving fractional nonlinear differential equations.<br>Computers and Mathematics With Applications, 2011, 61, 2186-2190.                   | 1.4 | 120       |
| 66 | Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation.<br>Communications in Theoretical Physics, 2011, 55, 1073-1076.                           | 1.1 | 9         |
| 67 | POROSITY FOR FRACTAL MEDIA. Journal of Porous Media, 2011, 14, 541-544.                                                                                                                   | 1.0 | 1         |
| 68 | Fractional variational iteration method and its application. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2506-2509.                                   | 0.9 | 276       |
| 69 | A new method for constructing soliton solutions to differential-difference equation with symbolic computation. Chaos, Solitons and Fractals, 2009, 39, 2245-2248.                         | 2.5 | 14        |
| 70 | Differential-difference model for textile engineering. Chaos, Solitons and Fractals, 2009, 42, 352-354.                                                                                   | 2.5 | 14        |
| 71 | Prolongation approach to Lax pairs and BĀēklund transformation of the variable coefficient KdV equation. Chaos, Solitons and Fractals, 2009, 42, 408-411.                                 | 2.5 | 3         |
| 72 | Uniformly constructing exact discrete soliton solutions and periodic solutions to<br>differential–difference equations. Computers and Mathematics With Applications, 2009, 58, 2351-2354. | 1.4 | 7         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Uniformly constructing soliton solutions and periodic solutions to Burgers–Fisher equation.<br>Computers and Mathematics With Applications, 2009, 58, 2355-2357.                                  | 1.4 | 11        |
| 74 | Symbolic computation and exact traveling solutions for nonlinear partial differential equations.<br>Journal of Shanghai University, 2008, 12, 481-485.                                            | 0.1 | 1         |
| 75 | A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 604-609. | 0.9 | 20        |
| 76 | Parameter estimation of fractional uncertain differential equations via Adams method. Nonlinear<br>Analysis: Modelling and Control, 0, 27, 1-15.                                                  | 1.1 | 5         |