Indira Guleria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How do I: Evaluate the safety and legitimacy of unproven cellular therapies?. Transfusion, 2022, 62, 518-532.	0.8	3
2	Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature, 2021, 590, 157-162.	13.7	53
3	Immunoregulation at the fetomaternal interface. Human Immunology, 2021, 82, 315-316.	1.2	0
4	Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. Journal of Clinical Investigation, 2020, 130, 4624-4636.	3.9	55
5	Immunity to X-linked inhibitor of apoptosis protein (XIAP) in malignant melanoma and check-point blockade. Cancer Immunology, Immunotherapy, 2019, 68, 1331-1340.	2.0	3
6	Biomarkers in Fetomaternal Tolerance. Clinics in Laboratory Medicine, 2019, 39, 145-156.	0.7	3
7	Preface. Clinics in Laboratory Medicine, 2019, 39, xiii-xiv.	0.7	0
8	Preformed Donor-specific Antibodies Against HLA Class II and Graft Outcomes in Deceased-donor Kidney Transplantation. Transplantation Direct, 2019, 5, e446.	0.8	5
9	Development of a Calculated Panel Reactive Antibody Web Service with Local Frequencies for Platelet Transfusion Refractoriness Risk Stratification. Journal of Pathology Informatics, 2019, 10, 26.	0.8	1
10	Ischemia augments alloimmune injury through IL-6-driven CD4+ alloreactivity. Scientific Reports, 2018, 8, 2461.	1.6	42
11	The impact of screening method on HLA antibody detection before and after lung transplantation: A prospective pilot study. Journal of Heart and Lung Transplantation, 2018, 37, 531-533.	0.3	4
12	A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood, 2018, 132, 1911-1921.	0.6	44
13	Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight, 2018, 3, .	2.3	29
14	Targeting antigen-presenting cells by anti–PD-1 nanoparticles augments antitumor immunity. JCI Insight, 2018, 3, .	2.3	48
15	Divergent Function of Programmed Death-Ligand 1 in Donor Tissue versus Recipient Immune System in a Murine Model of Bronchiolitis Obliterans. American Journal of Pathology, 2017, 187, 1368-1379.	1.9	2
16	The Presence of Pretransplant HLA Antibodies Does Not Impact the Development of Chronic Lung Allograft Dysfunction or CLAD-Related Death. Transplantation, 2017, 101, 2207-2212.	0.5	14
17	Association of Donor and Recipient Telomere Length with Clinical Outcomes following Lung Transplantation. PLoS ONE, 2016, 11, e0162409.	1.1	30
18	Antibodies against HLA-DP recognize broadly expressed epitopes. Human Immunology, 2016, 77, 1128-1139.	1.2	10

Indira Guleria

#	Article	IF	CITATIONS
19	Glioproliferative Lesion of the Spinal Cord as a Complication of "Stem-Cell Tourism― New England Journal of Medicine, 2016, 375, 196-198.	13.9	138
20	Effect of TIM-3 Blockade on the Immunophenotype and Cytokine Profile of Murine Uterine NK Cells. PLoS ONE, 2015, 10, e0123439.	1.1	16
21	Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival. Journal of the American Society of Nephrology: JASN, 2015, 26, 3102-3113.	3.0	28
22	Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6682-6687.	3.3	266
23	Role of PD1/PDL1 pathway, and TH17 and treg cells in maternal tolerance to the fetus. Biomedical Journal, 2015, 38, 25.	1.4	47
24	Impact of Pretransplant Anti-HLA Antibodies on Outcomes in Lung Transplant Candidates. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1234-1239.	2.5	65
25	Glomerular Inflammation Correlates With Endothelial Injury and With IL-6 and IL-1Î ² Secretion in the Peripheral Blood. Transplantation, 2014, 97, 1034-1042.	0.5	24
26	Blockade of the Programmed Death-1 (PD1) Pathway Undermines Potent Genetic Protection from Type 1 Diabetes. PLoS ONE, 2014, 9, e89561.	1.1	54
27	TIM-3 Regulates Innate Immune Cells To Induce Fetomaternal Tolerance. Journal of Immunology, 2013, 190, 88-96.	0.4	92
28	B7h (ICOS-L) Maintains Tolerance at the Fetomaternal Interface. American Journal of Pathology, 2013, 182, 2204-2213.	1.9	30
29	Presence of Anti-HLA Antibodies at High Threshold in Patients Listed for Lung Transplantation Is Associated With a Lower Transplant Rate and a Higher Antibody Mediated Rejection Incidence Posttransplant. Chest, 2013, 144, 1015A.	0.4	1
30	Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. Clinical Immunology, 2012, 142, 351-361.	1.4	50
31	The Link between the PDL1 Costimulatory Pathway and Th17 in Fetomaternal Tolerance. Journal of Immunology, 2011, 187, 4530-4541.	0.4	145
32	Anti-CD3 mAb treatment cures PDL1â^'/â^'.NOD mice of diabetes but precipitates fatal myocarditis. Clinical Immunology, 2011, 140, 47-53.	1.4	2
33	The Combination of Donor and Recipient Age is Critical in Determining Host Immunoresponsiveness and Renal Transplant Outcome. Annals of Surgery, 2010, 252, 662-674.	2.1	165
34	Divergent Role of Donor Dendritic Cells in Rejection versus Tolerance of Allografts. Journal of the American Society of Nephrology: JASN, 2009, 20, 535-544.	3.0	20
35	Multicenter phase I/II trial of the safety of allogeneic endothelial cell implants after the creation of arteriovenous access for hemodialysis use: The V-HEALTH study. Journal of Vascular Surgery, 2009, 50, 1359-1368.e1.	0.6	71
36	Role of ICOS pathway in autoimmune and alloimmune responses in NOD mice. Clinical Immunology, 2008, 126, 140-147.	1.4	52

INDIRA GULERIA

#	Article	IF	CITATIONS
37	Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 ⁺ CD4 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9331-9336.	3.3	348
38	Critical Role of Donor Tissue Expression of Programmed Death Ligand-1 in Regulating Cardiac Allograft Rejection and Vasculopathy. Circulation, 2008, 117, 660-669.	1.6	89
39	Targeting CD22 Reprograms B-Cells and Reverses Autoimmune Diabetes. Diabetes, 2008, 57, 3013-3024.	0.3	126
40	Maternal Acceptance of the Fetus: True Human Tolerance. Journal of Immunology, 2007, 178, 3345-3351.	0.4	222
41	A Link between PDL1 and T Regulatory Cells in Fetomaternal Tolerance. Journal of Immunology, 2007, 179, 5211-5219.	0.4	136
42	Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clinical Immunology, 2007, 125, 16-25.	1.4	111
43	Infection With <i>Listeria monocytogenes</i> as a Probe for Placental Immunological Function. , 2006, 122, 435-442.		2
44	Tissue expression of PD-L1 mediates peripheral T cell tolerance. Journal of Experimental Medicine, 2006, 203, 883-895.	4.2	1,042
45	Differential Role of Programmed Death-Ligand 1 and Programmed Death-Ligand 2 in Regulating the Susceptibility and Chronic Progression of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 176, 3480-3489.	0.4	122
46	Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. Journal of Experimental Medicine, 2006, 203, 2737-2747.	4.2	280
47	Induced costimulatory molecule-B7h costimulatory pathway in alloimmune regulation. Current Opinion in Organ Transplantation, 2005, 10, 186-190.	0.8	0
48	A critical role for the programmed death ligand 1 in fetomaternal tolerance. Journal of Experimental Medicine, 2005, 202, 231-237.	4.2	375
49	Aberrant Macrophage and Neutrophil Population Dynamics and Impaired Th1 Response to Listeria monocytogenesin Colony-Stimulating Factor 1-Deficient Mice. Infection and Immunity, 2001, 69, 1795-1807.	1.0	71
50	The trophoblast is a component of the innate immune system during pregnancy. Nature Medicine, 2000, 6, 589-593.	15.2	200
51	Auxotrophic vaccines for tuberculosis. Nature Medicine, 1996, 2, 334-337.	15.2	166
52	In vivo depletion of CD4 and CD8 T lymphocytes impairs Mycobacterium w vaccine-induced protection against M. tubercolosis in mice. Medical Microbiology and Immunology, 1993, 182, 129-35.	2.6	25