Mustafa Kaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692636/publications.pdf

Version: 2024-02-01

430874 454955 1,009 34 18 30 citations h-index g-index papers 34 34 34 672 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The dual functionality of Zn@BP catalyst: methanolysis and supercapatior. Journal of Materials Science: Materials in Electronics, 2022, 33, 13484-13492.	2.2	5
2	Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies. Bioresource Technology, 2021, 322, 124470.	9.6	42
3	Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 2021, 3, e243.	4.3	39
4	Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 2021, 46, 21534-21541.	7.1	23
5	Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 2021, 32, 18123-18137.	2.2	14
6	Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage, 2021, 3, e257.	4.3	16
7	Evaluation of Tea Factory Wastes in Energy and Other Areas - A Review. Health Sciences Quarterly, 2021, 1, .	0.1	3
8	A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 2021, 304, 121334.	6.4	23
9	A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 2021, 305, 121578.	6.4	29
10	A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst. Journal of Materials Science: Materials in Electronics, 2021, 32, 28909-28918.	2.2	9
11	Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. International Journal of Hydrogen Energy, 2020, 45, 12731-12742.	7.1	41
12	Spirulina microalgal strain as efficient a metalâ€free catalyst to generate hydrogen via methanolysis of sodium borohydride. International Journal of Energy Research, 2020, 44, 402-410.	4.5	42
13	Spirulina Platensis microalgae strain modified with phosphoric acid as a novel support material for Co–B catalysts: Its application to hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 2872-2883.	7.1	36
14	Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 2020, 45, 12743-12754.	7.1	54
15	Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. International Journal of Hydrogen Energy, 2020, 45, 1959-1968.	7.1	61
16	Carbon molecular sieve production from defatted spent coffee ground using ZnCl2 and benzene for gas purification. Fuel, 2020, 277, 118183.	6.4	20
17	A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 2020, 270, 117494.	6.4	216
18	A novel Microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 2020, 45, 12755-12765.	7.1	31

#	Article	IF	CITATIONS
19	NiB loaded acetic acid treated microalgae strain (<i>Spirulina Platensis</i>) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 2549-2560.	2.3	22
20	Highly efficient <scp>CoB</scp> catalyst using a support material based on Spirulina microalgal strain treated with <scp> ZnCl ₂ </scp> for hydrogen generation via sodium borohydride methanolysis. International Journal of Energy Research, 2019, 43, 4243-4252.	4.5	22
21	Highly efficient Co-B catalysts with Chlorella Vulgaris microalgal strain modified using hydrochloric acid as a new support material for hydrogen production from methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 2019, 44, 7262-7275.	7.1	42
22	Novel approach to study dispersion in growth and dissolution rate of crystals from solutions. Journal of Crystal Growth, 2019, 509, 17-22.	1.5	2
23	Preparation and Characterization of Small Pore Carbon Molecular Sieves by Chemical Vapor Deposition of Pistachio Shells. Analytical Letters, 2018, 51, 2429-2440.	1.8	8
24	Preparation and TG/DTG, FT-IR, SEM, BET Surface Area, lodine Number and Methylene Blue Number Analysis of Activated Carbon from Pistachio Shells by Chemical Activation. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	9
25	The effects of plasma treatment on electrochemical activity of Co–B–P catalyst for hydrogen production by hydrolysis of NaBH 4. Journal of the Energy Institute, 2017, 90, 466-475.	5.3	32
26	Plasma Treated Sepiolite: A New Adsorbent for Removal of Malachite Green from Contaminated Water. Plasma Chemistry and Plasma Processing, 2016, 36, 1417-1430.	2.4	18
27	The Effect of Microwave Irradiation on a Co-B-based Catalyst for Hydrogen Generation by Hydrolysis of NaBH ₄ Solution. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 462-467.	2.3	24
28	Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Applied Clay Science, 2015, 116-117, 46-53.	5.2	89
29	Effects of different temperatures and additives on the metastable zone width precipitation kinetics of NaBO2. Russian Journal of Physical Chemistry A, 2014, 88, 402-408.	0.6	17
30	Hydrogen production from sodium borohydride for fuel cells in presence of electrical field. International Journal of Energy Research, 2009, 34, n/a-n/a.	4.5	3
31	Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technologies and Environmental Policy, $0, 1$.	4.1	6
32	Synthesis of a dualâ€functionalized carbonâ€based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pdâ€supported pomegranate peel. Energy Storage, 0, , e284.	4.3	5
33	Tarımsal Atıktan Elde Edilen Aktif Karbon Destekli Co-B Katalizörü Varlığında Sodyum BorhidrürürüMetanolizi. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	⁴ n _{.8}	6
34	Mo-katkılı Mikroalg Kullanılarak Enerji Depolama Amaçlı Sþperkapasitör Üretimi. European Journal Science and Technology, 0, , .	of 0.5	0