Judy Callis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Arabidopsis thaliana E3 Ubiquitin Ligase BRIZ Functions in Abscisic Acid Response. Frontiers in Plant Science, 2021, 12, 641849.	3.6	3
2	Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant Direct, 2021, 5, e00316.	1.9	14
3	Factors that affect protein abundance of a positive regulator of abscisic acid signalling, the basic leucine zipper transcription factor ABREâ€binding factor 2 (ABF2). Plant Direct, 2021, 5, e00330.	1.9	2
4	The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 2020, 295, 13940-13955.	3.4	32
5	Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6463-6472.	7.1	23
6	Control of Amino Acid Homeostasis by a Ubiquitin Ligase-Coactivator Protein Complex. Journal of Biological Chemistry, 2017, 292, 3827-3840.	3.4	7
7	Arabidopsis fructokinase-like protein associations are regulated by ATP. Biochemical Journal, 2017, 474, 1789-1801.	3.7	7
8	Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 83.	3.6	40
9	Identification of the Plant Ribokinase and Discovery of a Role for Arabidopsis Ribokinase in Nucleoside Metabolism. Journal of Biological Chemistry, 2016, 291, 22572-22582.	3.4	20
10	Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1. Plant Physiology, 2015, 168, 708-720.	4.8	39
11	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	4.8	76
12	A genetic screen for mutants defective in IAA1-LUC degradation inArabidopsis thalianareveals an important requirement forTOPOISOMERASE6Bin auxin physiology. Plant Signaling and Behavior, 2014, 9, e972207.	2.4	4
13	The Ubiquitination Machinery of the Ubiquitin System. The Arabidopsis Book, 2014, 12, e0174.	0.5	260
14	Functional conservation between mammalian MGRN1 and plant LOG2 ubiquitin ligases. FEBS Letters, 2013, 587, 3400-3405.	2.8	15
15	<scp>ABA</scp> and the ubiquitin E3 ligase <scp>KEEP ON GOING</scp> affect proteolysis of the <i><scp>A</scp>rabidopsis thaliana</i> transcription factors <scp>ABF</scp> 1 and <scp>ABF</scp> 3. Plant Journal, 2013, 75, 965-976.	5.7	114
16	Ubiquitin on the Move: The Ubiquitin Modification System Plays Diverse Roles in the Regulation of Endoplasmic Reticulum- and Plasma Membrane-Localized Proteins. Plant Physiology, 2012, 160, 56-64.	4.8	58
17	The Ubiquitin E3 Ligase LOSS OF GDU2 Is Required for GLUTAMINE DUMPER1-Induced Amino Acid Secretion in Arabidopsis Â. Plant Physiology, 2012, 158, 1628-1642.	4.8	39
18	Recovery of DDB1a (DAMAGED DNA BINDING PROTEIN1a) in a Screen to Identify Novel RUB-Modified Proteins in Arabidopsis thaliana. Molecular Plant, 2012, 5, 1163-1166.	8.3	3

JUDY CALLIS

#	Article	IF	CITATIONS
19	The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana. BMC Plant Biology, 2012, 12, 102.	3.6	70
20	AXR1-ECR1 and AXL1-ECR1 heterodimeric RUB-activating enzymes diverge in function in Arabidopsis thaliana. Plant Molecular Biology, 2011, 75, 515-526.	3.9	16
21	BRIZ1 and BRIZ2 Proteins Form a Heteromeric E3 Ligase Complex Required for Seed Germination and Post-germination Growth in Arabidopsis thaliana. Journal of Biological Chemistry, 2010, 285, 37070-37081.	3.4	20
22	lsolation and Characterization of <i>cul1-7</i> , a Recessive Allele of <i>CULLIN1</i> That Disrupts SCF Function at the C Terminus of CUL1 in <i>Arabidopsis thaliana</i> . Genetics, 2009, 181, 945-963.	2.9	41
23	Degradation of the auxin response factor ARF1. Plant Journal, 2008, 54, 118-128.	5.7	48
24	Regulation of Cullin RING Ligases. Annual Review of Plant Biology, 2008, 59, 467-489.	18.7	175
25	KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling. Plant Cell, 2007, 18, 3415-3428.	6.6	347
26	A role for phospholipase A in auxinâ€regulated gene expression. FEBS Letters, 2007, 581, 4205-4211.	2.8	36
27	Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 2007, 99, 787-822.	2.9	432
28	Ubiquitin ligases mediate growth and development by promoting protein death. Current Opinion in Plant Biology, 2007, 10, 624-632.	7.1	150
29	The Arabidopsis Aux/IAA Protein Family Has Diversified in Degradation and Auxin Responsiveness. Plant Cell, 2006, 18, 699-714.	6.6	265
30	Preparation, Characterization, and Use of Tagged Ubiquitins. Methods in Enzymology, 2005, 399, 51-64.	1.0	9
31	Genome Analysis and Functional Characterization of the E2 and RING-Type E3 Ligase Ubiquitination Enzymes of Arabidopsis. Plant Physiology, 2005, 139, 1597-1611.	4.8	365
32	Functional Analysis of the RING-Type Ubiquitin Ligase Family of Arabidopsis. Plant Physiology, 2005, 137, 13-30.	4.8	524
33	Arabidopsis Has Two Redundant Cullin3 Proteins That Are Essential for Embryo Development and That Interact with RBX1 and BTB Proteins to Form Multisubunit E3 Ubiquitin Ligase Complexes in Vivo. Plant Cell, 2005, 17, 1180-1195.	6.6	153
34	Related to Ubiquitin 1 and 2 Are Redundant and Essential and Regulate Vegetative Growth, Auxin Signaling, and Ethylene Production in Arabidopsis. Plant Cell, 2004, 16, 2418-2432.	6.6	79
35	Acceleration of Aux/IAA proteolysis is specific for auxin and independent ofAXR1. Plant Journal, 2003, 35, 285-294.	5.7	53
36	Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response. Science, 2001, 292, 1379-1382.	12.6	451

JUDY CALLIS

#	Article	IF	CITATIONS
37	Rapid Degradation of Auxin/Indoleacetic Acid Proteins Requires Conserved Amino Acids of Domain II and Is Proteasome Dependent. Plant Cell, 2001, 13, 2349-2360.	6.6	260
38	Histidine-Tagged Ubiquitin Substitutes for Wild-Type Ubiquitin in Saccharomyces cerevisiae and Facilitates Isolation and Identification of in Vivo Substrates of the Ubiquitin Pathway. Analytical Biochemistry, 2000, 282, 54-64.	2.4	34
39	Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant Journal, 2000, 21, 553-562.	5.7	254
40	Protein degradation in signaling. Current Opinion in Plant Biology, 2000, 3, 381-386.	7.1	183
41	Polypeptide tags, ubiquitous modifiers for plant protein regulation. , 1999, 41, 435-442.		55
42	Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway. Plant Molecular Biology, 1998, 37, 337-347.	3.9	45
43	The Rub Family of Ubiquitin-like Proteins. Journal of Biological Chemistry, 1998, 273, 34976-34982.	3.4	78
44	A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes. Plant Molecular Biology, 1997, 34, 745-758.	3.9	16
45	Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant Journal, 1997, 11, 1017-1027.	5.7	120
46	The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Molecular Biology, 1993, 21, 895-906.	3.9	226
47	High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ. Plant Physiology, 1990, 94, 710-716.	4.8	28