Natalia Tretyakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 2002, 21, 7435-7451.	2.6	961
2	DNA–Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes. Accounts of Chemical Research, 2015, 48, 1631-1644.	7.6	144
3	Mass Spectrometry of Structurally Modified DNA. Chemical Reviews, 2013, 113, 2395-2436.	23.0	112
4	Peroxynitrite-Induced Reactions of Synthetic Oligonucleotides Containing 8-Oxoguanine. Chemical Research in Toxicology, 1999, 12, 459-466.	1.7	104
5	Quantitation of DNA Adducts by Stable Isotope Dilution Mass Spectrometry. Chemical Research in Toxicology, 2012, 25, 2007-2035.	1.7	97
6	Molecular Dosimetry of N-7 Guanine Adduct Formation in Mice and Rats Exposed to 1,3-Butadiene. Chemical Research in Toxicology, 1999, 12, 566-574.	1.7	96
7	Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-î²-d-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS. Nucleic Acids Research, 2006, 34, 5449-5460.	6.5	90
8	Peroxynitrite-induced DNA damage in the supF gene: correlation with the mutational spectrum. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 447, 287-303.	0.4	84
9	Formation of Benzo[a]pyrene Diol Epoxideâ^'DNA Adducts at Specific Guanines withinK-rasandp53Gene Sequences: Stable Isotope-Labeling Mass Spectrometry Approachâ€. Biochemistry, 2002, 41, 9535-9544.	1.2	81
10	Proteomic Analysis of DNAâ^'Protein Cross-Linking by Antitumor Nitrogen Mustards. Chemical Research in Toxicology, 2009, 22, 1151-1162.	1.7	71
11	Reversible DNA–Protein Crossâ€Linking at Epigenetic DNA Marks. Angewandte Chemie - International Edition, 2017, 56, 14130-14134.	7.2	71
12	Adenine Adducts with Diepoxybutane:Â Isolation and Analysis in Exposed Calf Thymus DNA. Chemical Research in Toxicology, 1997, 10, 1171-1179.	1.7	65
13	Molecular Dosimetry of 1,2,3,4-Diepoxybutane–Induced DNA-DNA Cross-Links in B6C3F1 Mice and F344 Rats Exposed to 1,3-Butadiene by Inhalation. Cancer Research, 2009, 69, 2479-2486.	0.4	64
14	Interstrand and Intrastrand DNAâ^'DNA Cross-Linking by 1,2,3,4-Diepoxybutane:Â Role of Stereochemistry. Journal of the American Chemical Society, 2005, 127, 14355-14365.	6.6	63
15	Structural Characterization of the Major DNAâ~'DNA Cross-Link of 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2004, 17, 129-136.	1.7	61
16	DNAâ^'Protein Cross-Linking by 1,2,3,4-Diepoxybutane. Journal of Proteome Research, 2010, 9, 4356-4367.	1.8	60
17	Peroxynitrite-Induced Secondary Oxidative Lesions at Guanine Nucleobases:Â Chemical Stability and Recognition by the Fpg DNA Repair Enzyme. Chemical Research in Toxicology, 2000, 13, 658-664.	1.7	59
18	Cross-Linking of the DNA Repair Protein <i>O</i> ⁶ -Alkylguanine DNA Alkyltransferase to DNA in the Presence of Antitumor Nitrogen Mustards. Chemical Research in Toxicology, 2008, 21, 787-795.	1.7	52

NATALIA TRETYAKOVA

#	Article	IF	CITATIONS
19	Formation of Diastereomeric Benzo[a]pyrene Diol Epoxide-Guanine Adducts inp53Gene-Derived DNA Sequences. Chemical Research in Toxicology, 2004, 17, 731-741.	1.7	51
20	Mechlorethamine-Induced DNA–Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells. Journal of Proteome Research, 2011, 10, 2785-2796.	1.8	51
21	Cross-Linking of the Human DNA Repair Protein O6-Alkylguanine DNA Alkyltransferase to DNA in the Presence of 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2006, 19, 645-654.	1.7	49
22	Synthesis of Site-Specific DNA–Protein Conjugates and Their Effects on DNA Replication. ACS Chemical Biology, 2014, 9, 1860-1868.	1.6	48
23	1,3-Butadiene: Biomarkers and application to risk assessment. Chemico-Biological Interactions, 2011, 192, 150-154.	1.7	47
24	Synthesis of Sequence-Specific DNA–Protein Conjugates via a Reductive Amination Strategy. Bioconjugate Chemistry, 2013, 24, 1496-1506.	1.8	47
25	OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. ELife, 2018, 7, .	2.8	46
26	Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA–protein cross-links in nucleosome core particles and cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11212-E11220.	3.3	45
27	Guanineâ^'Adenine DNA Cross-Linking by 1,2,3,4-Diepoxybutane:Â Potential Basis for Biological Activity. Chemical Research in Toxicology, 2004, 17, 1638-1651.	1.7	43
28	HPLCâ^'ESI+-MS/MS Analysis of N7-Guanineâ^'N7-Guanine DNA Cross-Links in Tissues of Mice Exposed to 1,3-Butadiene. Chemical Research in Toxicology, 2007, 20, 839-847.	1.7	43
29	Covalent DNA–Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells. Chemical Research in Toxicology, 2016, 29, 190-202.	1.7	43
30	Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget, 2017, 8, 34453-34467.	0.8	42
31	K-rasGene Sequence Effects on the Formation of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)â~DNA Adducts. Chemical Research in Toxicology, 2003, 16, 541-550.	1.7	41
32	Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Research, 2011, 39, 3988-4006.	6.5	40
33	Locating Nucleobase Lesions within DNA Sequences by MALDI-TOF Mass Spectral Analysis of Exonuclease Ladders. Chemical Research in Toxicology, 2001, 14, 1058-1070.	1.7	39
34	5-Formylcytosine mediated DNA–protein cross-links block DNA replication and induce mutations in human cells. Nucleic Acids Research, 2018, 46, 6455-6469.	6.5	39
35	Mapping Structurally Defined Guanine Oxidation Products along DNA Duplexes: Influence of Local Sequence Context and Endogenous Cytosine Methylation. Journal of the American Chemical Society, 2014, 136, 4223-4235.	6.6	38
36	Tobacco biomarkers and genetic/epigenetic analysis to investigate ethnic/racial differences in lung cancer risk among smokers. Npj Precision Oncology, 2018, 2, 17.	2.3	38

#	Article	IF	CITATIONS
37	Endogenous 5-Methylcytosine Protects Neighboring Guanines from N7 and O6-Methylation and O6-Pyridyloxobutylation by the Tobacco Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Biochemistry, 2004, 43, 540-549.	1.2	36
38	1,2,3,4-Diepoxybutane-Induced DNA–Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells. Journal of Proteome Research, 2013, 12, 2151-2164.	1.8	35
39	Mass Spectrometry Based Proteomics Study of Cisplatin-Induced DNA–Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells. Chemical Research in Toxicology, 2017, 30, 980-995.	1.7	35
40	Quantitative High-Performance Liquid Chromatographyâ^'Electrospray Ionizationâ^'Tandem Mass Spectrometry Analysis of the Adenineâr'Guanine Cross-Links of 1,2,3,4-Diepoxybutane in Tissues of Butadiene-Exposed B6C3F1 Mice. Chemical Research in Toxicology, 2008, 21, 1163-1170.	1.7	34
41	Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies. Chemical Research in Toxicology, 2010, 23, 118-133.	1.7	34
42	Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases. Journal of Biological Chemistry, 2016, 291, 23589-23603.	1.6	33
43	Persistence and Repair of Bifunctional DNA Adducts in Tissues of Laboratory Animals Exposed to 1,3-Butadiene by Inhalation. Chemical Research in Toxicology, 2011, 24, 809-817.	1.7	32
44	Error-prone Translesion Synthesis Past DNA-Peptide Cross-links Conjugated to the Major Groove of DNA via C5 of Thymidine. Journal of Biological Chemistry, 2015, 290, 775-787.	1.6	32
45	Quantitative High-Performance Liquid Chromatographyâ^'Electrospray Ionization Tandem Mass Spectrometry Analysis of Bis- <i>N</i> 7-Guanine DNAâ^'DNA Cross-Links in White Blood Cells of Cancer Patients Receiving Cyclophosphamide Therapy. Analytical Chemistry, 2010, 82, 3650-3658.	3.2	31
46	Stable Isotope Labelingâ^'Mass Spectrometry Analysis of Methyl- and Pyridyloxobutyl-Guanine Adducts of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in p53-Derived DNA Sequences. Biochemistry, 2005, 44, 2197-2207.	1.2	29
47	DNA-Reactive Protein Monoepoxides Induce Cell Death and Mutagenesis in Mammalian Cells. Biochemistry, 2013, 52, 3171-3181.	1.2	28
48	Epigenetic Events Determine Tissue-Specific Toxicity of Inhalational Exposure to the Genotoxic Chemical 1,3-Butadiene in Male C57BL/6J Mice. Toxicological Sciences, 2014, 142, 375-384.	1.4	27
49	NanoHPLC-nanoESI ⁺ -MS/MS Quantitation of <i>Bis</i> -N7-Guanine DNA–DNA Cross-Links in Tissues of B6C3F1 Mice Exposed to subppm Levels of 1,3-Butadiene. Analytical Chemistry, 2012, 84, 1732-1739.	3.2	25
50	Mutagenicity of a Model DNA-Peptide Cross-Link in Human Cells: Roles of Translesion Synthesis DNA Polymerases. Chemical Research in Toxicology, 2017, 30, 669-677.	1.7	25
51	Sequence Distribution of Acetaldehyde-Derived N2-Ethyl-dG Adducts along Duplex DNA. Chemical Research in Toxicology, 2007, 20, 1379-1387.	1.7	24
52	Formation of cyclophosphamide specific DNA adducts in hematological diseases. Pediatric Blood and Cancer, 2012, 58, 708-714.	0.8	24
53	Development of a Quantitative Liquid Chromatography/Electrospray Mass Spectrometric Assay for a Mutagenic Tobacco Specific Nitrosamine-Derived DNA Adduct,O6-[4-Oxo-4-(3-pyridyl)butyl]-2â€ ⁻ deoxyguanosine. Chemical Research in Toxicology, 2004, 17, 1600-1606.	1.7	23
54	Capillary HPLC-Accurate Mass MS/MS Quantitation of N7-(2,3,4-Trihydroxybut-1-yl)-guanine Adducts of 1,3-Butadiene in Human Leukocyte DNA. Chemical Research in Toxicology, 2013, 26, 1486-1497.	1.7	23

#	Article	IF	CITATIONS
55	Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. Biochemistry, 2018, 57, 6061-6069.	1.2	23
56	Quantitative Analysis of Trihydroxybutyl Mercapturic Acid, a Urinary Metabolite of 1,3-Butadiene, in Humans. Chemical Research in Toxicology, 2011, 24, 1516-1526.	1.7	22
57	1,3-Butadiene Exposure and Metabolism among Japanese American, Native Hawaiian, and White Smokers. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2240-2249.	1.1	22
58	Genetic Determinants of 1,3-Butadiene Metabolism and Detoxification in Three Populations of Smokers with Different Risks of Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1034-1042.	1.1	22
59	High throughput HPLC–ESIâ^'-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation. Chemico-Biological Interactions, 2015, 241, 23-31.	1.7	21
60	lsotope Dilution nanoLC/ESI ⁺ -HRMS ³ Quantitation of Urinary N7-(1-Hydroxy-3-buten-2-yl) Guanine Adducts in Humans and Their Use as Biomarkers of Exposure to 1,3-Butadiene. Chemical Research in Toxicology, 2017, 30, 678-688.	1.7	21
61	Chemical Biology of N ⁵ -Substituted Formamidopyrimidine DNA Adducts. Chemical Research in Toxicology, 2017, 30, 434-452.	1.7	20
62	Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radical Biology and Medicine, 2018, 121, 180-189.	1.3	20
63	Column Switching HPLC-ESI+-MS/MS Methods for Quantitative Analysis of Exocyclic dA Adducts in the DNA of Laboratory Animals Exposed to 1,3-Butadiene. Chemical Research in Toxicology, 2010, 23, 808-812.	1.7	19
64	Mass Spectrometryâ€Based Tools to Characterize <scp>DNA</scp> –Protein Crossâ€Linking by <i>Bis</i> â€Electrophiles. Basic and Clinical Pharmacology and Toxicology, 2017, 121, 63-77.	1.2	19
65	Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung. Scientific Reports, 2020, 10, 11290.	1.6	19
66	Kinetics of O6-Methyl-2â€~-deoxyguanosine Repair by O6-Alkylguanine DNA Alkyltransferase within K-ras Gene-Derived DNA Sequences. Chemical Research in Toxicology, 2006, 19, 531-538.	1.7	18
67	Density functional study of the influence of C5 cytosine substitution in base pairs with guanine. Theoretical Chemistry Accounts, 2009, 122, 179-188.	0.5	18
68	Bis-butanediol-mercapturic acid (bis-BDMA) as a urinary biomarker of metabolic activation of butadiene to its ultimate carcinogenic species. Carcinogenesis, 2014, 35, 1371-1378.	1.3	18
69	NanoLC/ESI ⁺ HRMS ³ Quantitation of DNA Adducts Induced by 1,3-Butadiene. Journal of the American Society for Mass Spectrometry, 2014, 25, 1124-1135.	1.2	18
70	Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radical Biology and Medicine, 2018, 120, 89-101.	1.3	18
71	Error-prone replication of a 5-formylcytosine-mediated DNA-peptide cross-link in human cells. Journal of Biological Chemistry, 2019, 294, 10619-10627.	1.6	18
72	3'-Exonuclease resistance of DNA oligodeoxynucleotides containing O6-[4-oxo-4-(3-pyridyl)butyl]guanine. Nucleic Acids Research, 2003, 31, 1984-1994.	6.5	17

NATALIA TRETYAKOVA

#	Article	IF	CITATIONS
73	The 5â€~-GNC Site for DNA Interstrand Cross-Linking Is Conserved for Diepoxybutane Stereoisomers. Chemical Research in Toxicology, 2006, 19, 16-19.	1.7	17
74	Translesion Synthesis across 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) Adducts by Human and Archebacterial DNA Polymerases. Journal of Biological Chemistry, 2012, 287, 38800-38811.	1.6	17
75	Polymerase Bypass of <i>N</i> ⁶ -Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene. Chemical Research in Toxicology, 2015, 28, 1496-1507.	1.7	17
76	Transcriptional Bypass of DNA–Protein and DNA–Peptide Conjugates by T7 RNA Polymerase. ACS Chemical Biology, 2019, 14, 2564-2575.	1.6	17
77	5-Formylcytosine-induced DNA–peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells. Journal of Biological Chemistry, 2019, 294, 18387-18397.	1.6	16
78	DNA epigenetic marks are linked to embryo aberrations in amphipods. Scientific Reports, 2020, 10, 655.	1.6	16
79	Structural Elucidation of a Novel DNAâ^'DNA Cross-Link of 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2007, 20, 284-289.	1.7	15
80	Endogenous cytosine methylation and the formation of carcinogen carcinogen-DNA adducts. Nucleic Acids Symposium Series, 2008, 52, 49-50.	0.3	15
81	Cytosine Methylation Effects on the Repair of O6-Methylguanines within CG Dinucleotides. Journal of Biological Chemistry, 2009, 284, 22601-22610.	1.6	15
82	Site-specific cross-linking of proteins to DNA <i>via</i> a new bioorthogonal approach employing oxime ligation. Chemical Communications, 2018, 54, 6296-6299.	2.2	15
83	A Method for Quantitating the Intracellular Metabolism of AZT Amino Acid Phosphoramidate Pronucleotides by Capillary High-Performance Liquid Chromatographyâ^'Electrospray Ionization Mass Spectrometry. Molecular Pharmaceutics, 2005, 2, 233-241.	2.3	14
84	Mutagenesis of the supF Gene by Stereoisomers of 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2007, 20, 790-797.	1.7	14
85	Reversible DNA–Protein Crossâ€Linking at Epigenetic DNA Marks. Angewandte Chemie, 2017, 129, 14318-14322.	1.6	14
86	Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues. Archives of Toxicology, 2019, 93, 791-800.	1.9	13
87	Urinary N7-(1-hydroxy-3-buten-2-yl) guanine adducts in humans: temporal stability and association with smoking. Mutagenesis, 2020, 35, 19-26.	1.0	13
88	Characterizing Adduct Formation of Electrophilic Skin Allergens with Human Serum Albumin and Hemoglobin. Chemical Research in Toxicology, 2020, 33, 2623-2636.	1.7	13
89	Discovery of Novel <i>N</i> -(4-Hydroxybenzyl)valine Hemoglobin Adducts in Human Blood. Chemical Research in Toxicology, 2018, 31, 1305-1314.	1.7	12
90	Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine. ACS Chemical Biology, 2021, 16, 2581-2594.	1.6	12

#	Article	IF	CITATIONS
91	DNA Oligomers Containing Site-Specific and Stereospecific Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Characterization, and Effects on DNA Structure. Chemical Research in Toxicology, 2010, 23, 1556-1567.	1.7	11
92	Site Specific N6-(2-Hydroxy-3,4-epoxybut-1-yl)adenine Oligodeoxynucleotide Adducts of 1,2,3,4-Diepoxybutane:  Synthesis and Stability at Physiological pH. Chemical Research in Toxicology, 2007, 20, 641-649.	1.7	10
93	Structures of Exocyclic <i>R,R</i> - and <i>S,S</i> - <i>N</i> ⁶ , <i>N</i> ⁶ -(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2014, 27, 805-817.	1.7	10
94	Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation?. Chemical Communications, 2018, 54, 1061-1064.	2.2	10
95	Effects of 2-Phenethyl Isothiocyanate on Metabolism of 1,3-Butadiene in Smokers. Cancer Prevention Research, 2020, 13, 91-100.	0.7	10
96	Interindividual Differences in DNA Adduct Formation and Detoxification of 1,3-Butadiene-Derived Epoxide in Human HapMap Cell Lines. Chemical Research in Toxicology, 2020, 33, 1698-1708.	1.7	10
97	Effects of <i>GSTT1</i> Genotype on the Detoxification of 1,3-Butadiene Derived Diepoxide and Formation of Promutagenic DNA–DNA Cross-Links in Human Hapmap Cell Lines. Chemical Research in Toxicology, 2021, 34, 119-131.	1.7	10
98	Spectral Differentiation and Immunoaffinity Capillary Electrophoresis Separation of Enantiomeric Benzo(<i>a</i>)pyrene Diol Epoxide-Derived DNA Adducts. Chemical Research in Toxicology, 2007, 20, 1192-1199.	1.7	9
99	Mass Spectrometry Based Approach to Study the Kinetics ofO6-Alkylguanine DNA Alkyltransferase-Mediated Repair ofO6-Pyridyloxobutyl-2′-deoxyguanosine Adducts in DNA. Chemical Research in Toxicology, 2011, 24, 1966-1975.	1.7	9
100	<i>N</i> ⁶ -(2-Deoxy- <scp>d</scp> - <i>erythro</i> -pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- Adducts of 1,3-Butadiene: Synthesis, Structural Identification, and Detection in Human Cells. Chemical Research in Toxicology, 2018, 31, 885-897.	(i>N-(2 1.7	2-hydroxy-3-b 9
101	Kinetics of <i>O</i> ⁶ -Pyridyloxobutyl-2′-deoxyguanosine Repair by Human <i>O</i> ⁶ -alkylguanine DNA Alkyltransferase. Biochemistry, 2013, 52, 4075-4088.	1.2	8
102	Translesion Synthesis Past 5-Formylcytosine-Mediated DNA–Peptide Cross-Links by hPolÎ∙ Is Dependent on the Local DNA Sequence. Biochemistry, 2021, 60, 1797-1807.	1.2	8
103	Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2â^'/â^'/Il10â^'/â^' Mouse Model. International Journal of Molecular Sciences, 2021, 22, 364.	1.8	8
104	Small Molecule Inhibitors of TET Dioxygenases: Bobcat339 Activity Is Mediated by Contaminating Copper(II). ACS Medicinal Chemistry Letters, 2022, 13, 792-798.	1.3	8
105	Synthesis of DNA oligodeoxynucleotides containing structurally defined N6-(2-hydroxy-3-buten-1-yl)-adenine adducts of 3,4-epoxy-1-butene. Chemico-Biological Interactions, 2007, 166, 104-111.	1.7	7
106	1,3-Butadiene-Induced Adenine DNA Adducts Are Genotoxic but Only Weakly Mutagenic When Replicated in Escherichia coli of Various Repair and Replication Backgrounds. Chemical Research in Toxicology, 2017, 30, 1230-1239.	1.7	7
107	Cellular Repair of DNA–DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane. International Journal of Molecular Sciences, 2017, 18, 1086.	1.8	7
108	Epigenetic Changes in Alveolar Type II Lung Cells of A/J Mice Following Intranasal Treatment with Lipopolysaccharide. Chemical Research in Toxicology, 2019, 32, 831-839.	1.7	7

#	Article	IF	CITATIONS
109	Siteâ€Specific 5â€Formyl Cytosine Mediated DNAâ€Histone Crossâ€Links: Synthesis and Polymerase Bypass by Human DNA Polymerase Î∙. Angewandte Chemie - International Edition, 2021, 60, 26489-26494.	7.2	7
110	UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development (Cambridge), 2022, 149, .	1.2	7
111	Effects of Sequence Context on <i>O⁶</i> Alkylguanine DNA Alkyltransferase Repair of <i>O⁶</i> Alkyl-Deoxyguanosine Adducts. ACS Symposium Series, 2010, , 73-101.	0.5	6
112	1,3-Butadiene metabolite 1,2,3,4 diepoxybutane induces DNA adducts and micronuclei but not t(9;22) translocations in human cells. Chemico-Biological Interactions, 2019, 312, 108797.	1.7	6
113	Ethnic differences in excretion of butadiene–DNA adducts by current smokers. Carcinogenesis, 2021, 42, 694-704.	1.3	6
114	Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene. Chemical Research in Toxicology, 2021, 34, 2375-2383.	1.7	6
115	Major Groove Orientation of the (2S)-N6-(2-Hydroxy-3-buten-1-yl)-2′-deoxyadenosine DNA Adduct Induced by 1,2-Epoxy-3-butene. Chemical Research in Toxicology, 2014, 27, 1675-1686.	1.7	5
116	Cross-linking of the DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of cisplatin. DNA Repair, 2020, 89, 102840.	1.3	5
117	Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1904-1919.	1.1	4
118	Synthesis and biological evaluation of pyrrolidine-functionalized nucleoside analogs. Medicinal Chemistry Research, 2021, 30, 483-499.	1.1	4
119	Novel 4-Hydroxybenzyl Adducts in Human Hemoglobin: Structures and Mechanisms of Formation. Chemical Research in Toxicology, 2021, 34, 1769-1781.	1.7	4
120	Quantitative NanoLC/NSI+-HRMS Method for 1,3-Butadiene Induced bis-N7-guanine DNA-DNA Cross-Links in Urine. Toxics, 2021, 9, 247.	1.6	4
121	Synthesis of DNA Oligodeoxynucleotides Containing Siteâ€6pecific 1,3â€Butadiene―Deoxyadenosine Lesions. Current Protocols in Nucleic Acid Chemistry, 2015, 61, 4.61.1-4.61.22.	0.5	3
122	Base Excision Repair of N6-Deoxyadenosine Adducts of 1,3-Butadiene. Biochemistry, 2016, 55, 6070-6081.	1.2	3
123	<scp>6â€phenylpyrrolocytosine</scp> as a fluorescent probe to examine nucleotide flipping catalyzed by a <scp>DNA</scp> repair protein. Biopolymers, 2021, 112, e23405.	1.2	3
124	Siteâ€Specific 5â€Formyl Cytosine Mediated DNAâ€Histone Crossâ€Links: Synthesis and Polymerase Bypass by Human DNA Polymerase Î∙. Angewandte Chemie, 2021, 133, 26693-26698.	1.6	3
125	Photocaged dicarbonyl probe provides spatiotemporal control over protein glycation. Chemical Communications, 2022, 58, 855-858.	2.2	3
126	Quantitative Proteogenomic Characterization of Inflamed Murine Colon Tissue Using an Integrated Discovery, Verification, and Validation Proteogenomic Workflow. Proteomes, 2022, 10, 11.	1.7	2

NATALIA TRETYAKOVA

#	Article	IF	CITATIONS
127	Epigenetics in Toxicology. Chemical Research in Toxicology, 2018, 31, 822-822.	1.7	1
128	Experimental Methodologies for Detection and Mapping of Epigenetic DNA Marks. Topics in Medicinal Chemistry, 2019, , 487-521.	0.4	1
129	Epigenetics in Toxicology. Chemical Research in Toxicology, 2019, 32, 793-793.	1.7	1
130	DEBâ€FAPyâ€dG Adducts of 1,3â€Butadiene: Synthesis, Structural Characterization, and Formation in 1,2,3,4â€Diepoxybutane Treated DNA**. Chemistry - A European Journal, 2021, , .	1.7	1
131	Structure Elucidation of DNA–Protein Crosslinks by Using Reductive Desulfurization and Liquid Chromatography–Tandem Mass Spectrometry. ChemBioChem, 2014, 15, 353-355.	1.3	0
132	Synthesis and polymerase bypass studies of DNA-peptide and DNA-protein conjugates. Methods in Enzymology, 2021, 661, 363-405.	0.4	0