
Shingo Miyauchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2691794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
2	Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 2006, 38, 3041-3056.	8.8	229
3	Comparative genomics of <i>Rhizophagus irregularis</i> , <i> R.Âcerebriforme</i> , <i> R.Âdiaphanus</i> and <i>Gigaspora rosea</i> highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222, 1584-1598.	7.3	133
4	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
5	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	8.9	72
6	The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS ONE, 2017, 12, e0175528.	2.5	64
7	Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communications, 2021, 12, 7227.	12.8	58
8	Human Papilloma Viruses and Breast Cancer. Frontiers in Oncology, 2015, 5, 277.	2.8	51
9	Visual Comparative Omics of Fungi for Plant Biomass Deconstruction. Frontiers in Microbiology, 2016, 7, 1335.	3.5	46
10	Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass. Biotechnology for Biofuels, 2018, 11, 201.	6.2	45
11	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
12	Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus <i>Pycnoporus</i> . DNA Research, 2020, 27, .	3.4	32
13	Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 17117-17130.	3.4	30
14	An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant, Cell and Environment, 2020, 43, 1047-1068.	5.7	30
15	Human Papilloma Virus Identification in Breast Cancer Patients with Previous Cervical Neoplasia. Frontiers in Oncology, 2015, 5, 298.	2.8	29
16	Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. New Biotechnology, 2013, 30, 523-530.	4.4	26
17	Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 385-404.	8.3	26
18	The fungal root endophyte <i>Serendipita vermifera</i> displays inter-kingdom synergistic beneficial effects with the microbiota in <i>Arabidopsis thaliana</i> and barley. ISME Journal, 2022, 16, 876-889.	9.8	22

Shingo Miyauchi

#	Article	IF	CITATIONS
19	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	7.3	21
20	Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle. New Phytologist, 2021, 229, 2917-2932.	7.3	19
21	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	7.3	19
22	Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. BMC Genomics, 2018, 19, 815.	2.8	15
23	Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milkâ€cap (<i>Lactarius</i>) mushrooms. New Phytologist, 2022, 235, 306-319.	7.3	14
24	Simultaneous expression of the bacterial Dictyoglomus thermophilum xynB gene under three different Trichoderma reesei promoters. New Biotechnology, 2014, 31, 98-103.	4.4	11
25	A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria bicolor. Microorganisms, 2021, 9, 2612.	3.6	11
26	Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 311.	3.5	10
27	Autism Susceptibility Genes and the Transcriptional Landscape of the Human Brain. International Review of Neurobiology, 2013, 113, 303-318.	2.0	7