Zbigniew FlorjaÅ,,czyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2691496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living pseudoanionic polymerization of iε-caprolactone. Poly(iε-caprolactone) free of cyclics and with controlled end groups. Macromolecules, 1990, 23, 1640-1646.	4.8	171
2	Polymer-in-Salt Electrolytes Based on Acrylonitrile/Butyl Acrylate Copolymers and Lithium Salts. Journal of Physical Chemistry B, 2004, 108, 14907-14914.	2.6	66
3	Organically Modified Aluminum Phosphates:  Synthesis and Characterization of Model Compounds Containing Diphenyl Phosphate Ligands. Chemistry of Materials, 2006, 18, 1995-2003.	6.7	42
4	Chemical recycling of poly(lactic acid) via controlled degradation with protic (macro)molecules. Polymer Degradation and Stability, 2014, 108, 288-296.	5.8	42
5	Ring opening polymerization initiated by methylaluminoxane/AlMe3 complexes. Polymer, 2006, 47, 1081-1090.	3.8	37
6	Title is missing!. Die Makromolekulare Chemie, 1976, 177, 2627-2635.	1.1	34
7	Investigations on the Interaction of Dichloroaluminum Carboxylates with Lewis Bases and Water: an Efficient Road toward Oxo- and Hydroxoaluminum Carboxylate Complexes. Inorganic Chemistry, 2012, 51, 737-745.	4.0	33
8	Esters of Tartaric Acid, A New Class of Potential "Double Green―Plasticizers. ACS Sustainable Chemistry and Engineering, 2017, 5, 5999-6007.	6.7	28
9	Telechelic poly(ε-caprolactone) terminated at both ends with OH groups and its derivatization. Die Makromolekulare Chemie, 1991, 192, 1457-1465.	1.1	27
10	Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers. Journal of Power Sources, 2006, 159, 392-398.	7.8	26
11	Highly conducting solid electrolytes based on poly (ethylene oxide-co-propylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 629-635.	2.1	24
12	The electron spin resonance spectra and structures of some aluminium derivatives of 3,6-di-t-butyl-1,2-benzoquinone. Journal of Organometallic Chemistry, 1982, 229, 215-222.	1.8	23
13	On the Ionic Species Formed in Reactions of Sulfur Dioxide with Cyclic Ethers and Propylene Sulfide. Macromolecules, 1996, 29, 826-834.	4.8	23
14	On the reactivity of sulfur dioxide in chain polymerization reactions. Progress in Polymer Science, 1991, 16, 509-560.	24.7	22
15	Dispersions of organically modified boehmite particles and a carboxylated styrene–butadiene latix: A simple way to nanocomposites. Journal of Applied Polymer Science, 2007, 105, 80-88.	2.6	21
16	The effect of complexing agents on the radical polymerization of polar vinyl monomers. Die Makromolekulare Chemie, 1977, 178, 1881-1888.	1.1	18
17	Terpolymerization of maleic anhydride with vinyl monomers. Journal of Polymer Science Part A, 1989, 27, 4099-4108.	2.3	18
18	Copolymerization of ethylene oxide and sulfur dioxide initiated by lewis bases. Die Makromolekulare Chemie, 1993, 194, 2605-2613.	1.1	18

#	Article	IF	CITATIONS
19	Highly Conducting Lithium Polyelectrolytes Based on Maleic Anhydrideâ~'Styrene Copolymers. Journal of Physical Chemistry B, 1998, 102, 8409-8416.	2.6	18
20	Organically Modified Aluminophosphates:  Transformation of Boehmite into Nanoparticles and Fibers Containing Aluminodiethylphosphate Tectons. Chemistry of Materials, 2007, 19, 5584-5592.	6.7	18
21	Screening of metal catalysts influence on the synthesis, structure, properties, and biodegradation of <scp>PLA</scp> â€ <scp>PBA</scp> triblock copolymers obtained in melt. Journal of Polymer Science Part A, 2015, 53, 1444-1456.	2.3	17
22	Polymer solid electrolytes based on ethylene oxide copolymers. Angewandte Makromolekulare Chemie, 1991, 187, 19-32.	0.2	16
23	Structure Investigations of Dichloroaluminum Benzoates: An Unprecedented Example of a Monomeric Aluminum Complex with a Chelating Carboxylate Ligand. Inorganic Chemistry, 2009, 48, 10892-10894.	4.0	14
24	Solubility of Plasticizers, Polymers and Environmental Pollution. , 2007, , 397-408.		13
25	Polymer electrolytes based on PEO and aluminum carboxylates. Solid State Ionics, 2002, 152-153, 227-234.	2.7	12
26	Multiâ€ e rm star polymers of lactide obtained in melt in the presence of hyperbranched oligoglycerols. Polymer International, 2016, 65, 927-937.	3.1	12
27	On the 1,6-addition of alkylamuninium compounds to para-quinones. Journal of Organometallic Chemistry, 1983, 259, 127-137.	1.8	11
28	Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers with polyfunctional monomers. Journal of Power Sources, 2006, 159, 385-391.	7.8	11
29	A study of the relative reactivity of maleic anhydride and some maleimides in free radical copolymerization and terpolymerization. Journal of Polymer Science Part A, 1990, 28, 795-801.	2.3	10
30	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 393-397.	1.1	10
31	Copolymerization of ethylene oxide and sulfur dioxide initiated by salts. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 207-211.	1.1	10
32	On the paramagnetic species formed in the reaction between 2,4,6-tri-t-butylnitrosobenzene and organoaluminium compounds. Journal of Organometallic Chemistry, 1983, 251, 1-5.	1.8	9
33	Terpolymerization of maleic anhydride, styrene and electron-acceptor monomers. Die Makromolekulare Chemie, 1988, 189, 53-65.	1.1	9
34	Terpolymerization of Sulfur Dioxide with Oxiranes and Cyclic Anhydrides. Macromolecular Chemistry and Physics, 2002, 203, 565-572.	2.2	8
35	Organic esters of phosphoric acid as electrolytes for a protonic photoelectrochromic window. Journal of Power Sources, 2006, 159, 399-404.	7.8	8
36	Solid polymer electrolytes based on ethylene oxide polymers. Polimery, 2014, 59, 80-87.	0.7	8

#	Article	IF	CITATIONS
37	Copolymerization and homopolymerization reactions in systems containing electron-donor monomer, electron-acceptor monomer, and lewis acid. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 867-875.	0.8	7
38	Copolymerization of methyl acrylate with isobutylene in the presence of lewis acids. Die Makromolekulare Chemie, 1982, 183, 1081-1091.	1.1	7
39	Reactions of organoaluminium compounds with tetracyanoethylene and 7,7,8,8-tetracyanoquinodimethane. Journal of Organometallic Chemistry, 1983, 252, 275-280.	1.8	7
40	Polymerization of vinyl monomers initiated by organoaluminium compounds/benzoyl peroxide systems. Journal of Polymer Science Part A, 1986, 24, 1849-1862.	2.3	7
41	Water-Based Air-Drying Alkyd Polyester Resins Modified With Glycerol Allyl Ether. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 509-521.	2.2	7
42	On the copolymerization of monomers from renewable resources: l-lactide and ethylene carbonate in the presence of metal alkoxides. Pure and Applied Chemistry, 2014, 86, 733-745.	1.9	7
43	Title is missing!. Die Makromolekulare Chemie, 1978, 179, 287-294.	1.1	6
44	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 2719-2730.	1.1	6
45	Title is missing!. Die Makromolekulare Chemie, 1980, 181, 2279-2285.	1.1	5
46	Proton conducting gels for electrochemical devices. Macromolecular Symposia, 2000, 152, 223-241.	0.7	5
47	Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins. Journal of Power Sources, 2006, 159, 378-384.	7.8	5
48	Thermally induced structural transformations of linear coordination polymers based on aluminum tris(diorganophosphates). Dalton Transactions, 2018, 47, 16480-16491.	3.3	5
49	Polymeric Materials Based on Carbon Dioxide: A Brief Review of Studies Carried Out at the Faculty of Chemistry, Warsaw University of Technology. Polymers, 2022, 14, 718.	4.5	5
50	Copolymerization of methyl acrylate and vinyl acetate catalyzed by ethylaluminium chlorides. Journal of Polymer Science Part A, 1989, 27, 1559-1570.	2.3	4
51	On the kinetic model for the radical copolymerization of methyl acrylate and sulfur dioxide. Macromolecules, 1990, 23, 2901-2904.	4.8	4
52	On the reactivity of aromatic acrylates in free-radical copolymerization with SO2 and terpolymerization with SO2 and 1-heptene. Polymer, 1991, 32, 2853-2855.	3.8	4
53	Lithium polymer electrolytes containing oligomeric imidazolium ionic liquids. Polymer International, 2016, 65, 963-969.	3.1	4
54	Copolymers of sulfur dioxide. Polimery, 1987, 32, 213-217.	0.7	4

#	Article	IF	CITATIONS
55	Telechelic oligomers made from ethylene oxide and phosphoric acid. Structure and transformation into organoaluminum polymers. Polimery, 2004, 49, 389-397.	0.7	4
56	Organometallic compounds as catalysts in the alternating copolymerization of acrylonitirle with butadiene. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 861-866.	0.8	3
57	Polymerization of vinyl chloride in the presence of modified Ziegler–Natta catalysts comprising long chain organoaluminum compounds. Journal of Polymer Science Part A, 1987, 25, 343-351.	2.3	3
58	Terpolymerization of sulfur dioxide and methyl acrylate with electron donor monomers. Die Makromolekulare Chemie, 1989, 190, 677-689.	1.1	3
59	Polymer Gel Electrolytes Based on Glycidyl Methacrylate Homopolymer and Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 1121-1134.	2.2	3
60	New Route to Segmental Star-Shaped Copolymers of Lactic Acid. Molecular Crystals and Liquid Crystals, 2014, 603, 89-98.	0.9	3
61	1D and 2D hybrid polymers based on zinc phenylphosphates: synthesis, characterization and applications in electroactive materials. RSC Advances, 2021, 11, 7873-7885.	3.6	3
62	Synthesis of functionalized carboxyalumoxanes as the fillers of polymeric nanocomposites. Polimery, 2003, 48, 528-536.	0.7	3
63	Organoaluminum compounds as the initiators and catalysts of chain polymerization processes. Polimery, 2012, 57, 425-432.	0.7	3
64	Terpolymerization of sulfur dioxide with maleic anhydride and vinyl monomers. Die Makromolekulare Chemie, 1989, 190, 2149-2159.	1.1	2
65	Free-radical initiating systems comprising organoaluminium compounds and organic electron-acceptors. Die Makromolekulare Chemie, 1985, 186, 2255-2268.	1.1	1
66	Reactions of trimethyl- and triethylaluminium with 2,4,6-tri-t-butylnitrosobenzene. Journal of Organometallic Chemistry, 1986, 312, 297-303.	1.8	1
67	Polymer Composites Based on Reactive Carboxylateâ€Alumoxanes. Macromolecular Symposia, 2011, 308, 77-86.	0.7	1
68	Proton-conducting phosphoric acid polyesters. Polimery, 1999, 44, 18-23.	0.7	1
69	Phosphorylated phenolic resins. Polimery, 2001, 46, 511-515.	0.7	1
70	Studies on the synthesis and reactivity of butyl glycidyl fum a rate. Polimery, 1994, 39, 90-98.	0.7	1
71	Synthesis and characterization of star-shaped copolymers obtained from lactic acid and heterocyclic monomers. Polimery, 2017, 62, 291-297.	0.7	1
72	Synthesis and characterization of lactic acid – citric acid copolymers. Polimery, 2017, 62, 335-339.	0.7	1

#	Article	IF	CITATIONS
73	Influence of substituents in aryl groups on the structure, thermal transitions and electrorheological properties of zinc bis(diarylphosphate) hybrid polymers. Dalton Transactions, 2022, , .	3.3	1
74	Composite Lithium Electrolytes Based on Aluminum Carboxylates. , 0, , .		0
75	New Organophilic Montmorillonites with Lactic Acid Oligomers and Other Environmentally Friendly Compounds and Their Effect on Mechanical Properties of Polylactide (PLA), Materials, 2021, 14, 6286	2.9	0