
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269137/publications.pdf Version: 2024-02-01

YONG LUL

#	Article	IF	CITATIONS
1	Binary structured polypropylene-/propylene-based elastomer fibrous membranes with enhanced flexibility. Journal of Industrial Textiles, 2022, 51, 1431-1444.	1.1	3
2	Comments on COVID-19, a double-edged sword for the environment: a review on the impacts of COVID-19 on the environment. Environmental Science and Pollution Research, 2022, 29, 10867-10869.	2.7	0
3	PLLA–gelatin composite fiber membranes incorporated with functionalized CeNPs as a sustainable wound dressing substitute promoting skin regeneration and scar remodeling. Journal of Materials Chemistry B, 2022, 10, 1116-1127.	2.9	18
4	Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. Journal of Energy Chemistry, 2022, 69, 466-489.	7.1	27
5	Mesoscale hydrated morphology of perfluorosulfonic acid membranes. Journal of Applied Polymer Science, 2022, 139, 52275.	1.3	1
6	Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials, 2022, 12, 1123.	1.9	13
7	Review of the Principles, Devices, Parameters, and Applications for Centrifugal Electrospinning. Macromolecular Materials and Engineering, 2022, 307, .	1.7	22
8	A novel core-shell rifampicin/isoniazid electrospun nanofiber membrane for long time drug dissolution. Engineered Regeneration, 2022, 3, 73-79.	3.0	1
9	Recent Progress in Electrospun Nanofiber-Based Degenerated Intervertebral Disc Repair. ACS Biomaterials Science and Engineering, 2022, 8, 16-31.	2.6	9
10	Wrinkle-structured MXene film assists flexible pressure sensors with superhigh sensitivity and ultrawide detection range. Nanocomposites, 2022, 8, 81-94.	2.2	10
11	Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. Nanomaterials, 2022, 12, 1663.	1.9	8
12	In-situ growth of iron nanoparticles on porous carbon nanofibers for structural high-performance lithium metal anode. Electrochimica Acta, 2022, 422, 140552.	2.6	2
13	Core–shell alum-borneol fiber for high bioavailability. Progress in Biomaterials, 2022, 11, 253-261.	1.8	1
14	Electrospun hydroxyapatite loaded L-polylactic acid aligned nanofibrous membrane patch for rotator cuff repair. International Journal of Biological Macromolecules, 2022, 217, 180-187.	3.6	11
15	Water management characteristics of electrospun micro-porous layer in PEMFC under normal temperature and cold start conditions. International Journal of Hydrogen Energy, 2021, 46, 11150-11159.	3.8	33
16	Preparation of Alum-borneol-PVP Drug-loaded Fibers by Electrospinning. Chemical Research in Chinese Universities, 2021, 37, 411-418.	1.3	9
17	Cold start capability and durability of electrospun catalyst layer for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 11140-11149.	3.8	16
18	Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polymer Testing, 2021, 93, 106957.	2.3	15

#	Article	IF	CITATIONS
19	Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry, 2021, 59, 688-705.	7.1	63
20	Recent development of electrospun wound dressing. Current Opinion in Biomedical Engineering, 2021, 17, 100247.	1.8	40
21	Realization of Circular Economy of 3D Printed Plastics: A Review. Polymers, 2021, 13, 744.	2.0	45
22	Dissipative Particle Dynamics Simulation: A Review on Investigating Mesoscale Properties of Polymer Systems. Macromolecular Materials and Engineering, 2021, 306, 2000724.	1.7	28
23	Mesoscale Simulation on the Hydrated Morphologies of SPEEK Membrane. Macromolecular Theory and Simulations, 2021, 30, 2100006.	0.6	4
24	Electrospun high bioavailable rifampicin–isoniazid-polyvinylpyrrolidone fiber membranes. Applied Nanoscience (Switzerland), 2021, 11, 2271-2280.	1.6	6
25	Electrospun Core–Shell Structure Fibers for Puerarin-Loaded Vascular Grafts. ACS Applied Polymer Materials, 2021, 3, 4195-4202.	2.0	5
26	Optimization of GDL to improve water transferability. Renewable Energy, 2021, 179, 2086-2093.	4.3	16
27	Preparation and performance of hydrophobic and conductive silica composite fiber membrane. Journal of Materials Science, 2020, 55, 191-202.	1.7	6
28	Application of carbon dots in dyeâ€sensitized solar cells: A review. Journal of Applied Polymer Science, 2020, 137, 48443.	1.3	81
29	Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Applied Energy, 2020, 257, 114027.	5.1	101
30	MOF [NH2-MIL-101(Fe)] as a powerful and reusable Fenton-like catalyst. Journal of Water Process Engineering, 2020, 33, 101004.	2.6	40
31	Preparation of hierarchical-pore gas diffusion layer for fuel cell. Journal of Materials Science, 2020, 55, 4558-4569.	1.7	22
32	Nitrogen doped TiO2/Graphene nanofibers as DSSCs photoanode. Materials Chemistry and Physics, 2020, 255, 123542.	2.0	23
33	Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. Journal of Materials Chemistry B, 2020, 8, 9110-9120.	2.9	33
34	Progress of Improving Mechanical Strength of Electrospun Nanofibrous Membranes. Macromolecular Materials and Engineering, 2020, 305, 2000230.	1.7	43
35	Groove-shaped polypropylene/polyester micro/nanofibrous nonwoven with enhanced oil wetting capability for high oil/water separation. Polymer, 2020, 193, 122356.	1.8	18
36	Improved Fiber Uniformity and Jet Number in Multi-spinneret Electrospinning via Auxiliary Electrode. Fibers and Polymers, 2019, 20, 1172-1179.	1.1	6

#	Article	IF	CITATIONS
37	Orthogonal experimental preparation of Sanguis Draconis- Polyvinylpyrrolidone microfibers by electrospinning. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 308-321.	1.9	1
38	Review of mechanisms and deformation behaviors in 4D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4633-4649.	1.5	48
39	Structure-morphology impact upon segmental dynamics and diffusion in the biodegradable ultrafine fibers of polyhydroxybutyrate-polylactide blends. European Polymer Journal, 2019, 117, 208-216.	2.6	22
40	Controllable preparation of methyltriethoxysilane xerogel nanofibers. Journal of Materials Science, 2019, 54, 10130-10140.	1.7	11
41	Dissipative particle dynamics simulations of centrifugal melt electrospinning. Journal of Materials Science, 2019, 54, 9958-9968.	1.7	12
42	Black plaster composite fiber prepared by upward electrospinning. Journal of Applied Polymer Science, 2019, 136, 47662.	1.3	5
43	Fiber membranes obtained by melt electrospinning for drug delivery. , 2019, , 173-195.		Ο
44	Dissipative particle dynamics simulation on melt electrospinning. , 2019, , 103-121.		0
45	Development of melt electrospinning. , 2019, , 1-5.		3
46	Formation of fibrous structure and influential factors in melt electrospinning. , 2019, , 21-90.		3
47	Economical and highly efficient Pt-free counter electrode for dye-sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 1-10.	2.3	10
48	Melt electrospinning in a parallel electric field. , 2019, , 91-101.		1
49	The device of melt electrospinning. , 2019, , 7-19.		1
50	Dissipative particle dynamics simulations of centrifugal melt electrospinning. , 2019, , 145-158.		0
51	Electrospinning preparation of a graphene oxide nanohybrid protonâ€exchange membrane for fuel cells. Journal of Applied Polymer Science, 2018, 135, 46443.	1.3	18
52	Solution electrospinning with a pulsed electric field. Journal of Applied Polymer Science, 2018, 135, 46130.	1.3	8
53	Recent studies on electrospinning preparation of patterned, core–shell, and aligned scaffolds. Journal of Applied Polymer Science, 2018, 135, 46570.	1.3	22
54	PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery. Drug Delivery and Translational Research, 2018, 8, 291-302.	3.0	45

#	Article	IF	CITATIONS
55	Recent progress in electrospinning TiO ₂ nanostructured photoâ€anode of dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2018, 135, 45649.	1.3	47
56	Comparative Characterization of Melt Electrospun Fibers and Films Based on PLAâ€₽HB Blends: Diffusion, Drug Release, and Structural Features. Macromolecular Symposia, 2018, 381, 1800130.	0.4	9
57	Electrochemical Characterization of Preâ€conditioning Process of Electrospun Nanofiber Electrodes in Polymer Electrolyte Fuel Cells. Fuel Cells, 2018, 18, 576-585.	1.5	16
58	Facile fabrication of core-shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer, 2017, 110, 80-86.	1.8	25
59	Photo and Thermal Cured Siliconâ€Containing Diethynylbenzene Fibers via Melt Electrospinning with Enhanced Thermal Stability. Journal of Polymer Science Part A, 2017, 55, 2815-2823.	2.5	11
60	Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (Lâ€'lactic acid) fibrous meshes. Biofabrication, 2017, 9, 044106.	3.7	61
61	Recent development of centrifugal electrospinning. Journal of Applied Polymer Science, 2017, 134, .	1.3	39
62	Recent Developments in Regenerated Silk Fiber. Journal of Nanoscience and Nanotechnology, 2017, 17, 8667-8682.	0.9	12
63	Preparation and Dissolution of Solid Dispersions of Sanguis Draconis. , 2017, , .		1
64	Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers. Materials Letters, 2016, 176, 194-198.	1.3	16
65	Pulsed Electric Fields on Poly- <scp>l</scp> -(lactic acid) Melt Electrospun Fibers. Industrial & Engineering Chemistry Research, 2016, 55, 7116-7123.	1.8	25
66	Progress in Preparation of Phenolic Fibers by Electrospinning. Materials Science Forum, 2015, 815, 638-642.	0.3	1
67	Orthogonal design preparation of phenolic fiber by melt electrospinning. Journal of Applied Polymer Science, 2015, 132, .	1.3	27
68	3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10, 103-122.	5.3	660
69	Research and Development in Electrospinning Theory and Technology. Materials Science Forum, 2015, 815, 695-700.	0.3	2
70	Orthogonal design study on factors affecting the diameter of perfluorinated sulfonic acid nanofibers during electrospinning. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
71	Effect of polar additives on melt electrospinning of nonpolar polypropylene. Journal of the Serbian Chemical Society, 2014, 79, 587-596.	0.4	20
72	Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether) Tj ETQq0 0 0	rgBT /Ov 1.0	erlock 10 Tf 5 18

2014, 292, 2993-3001.

#	Article	IF	CITATIONS
73	Melt electrospinning in a parallel electric field. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 946-952.	2.4	21
74	Removal of Indoor Formaldehyde with Nanoscale Catalytic Oxidation. Materials Science Forum, 2014, 787, 92-96.	0.3	1
75	Tug of war effect in melt electrospinning. Journal of Non-Newtonian Fluid Mechanics, 2013, 202, 131-136.	1.0	11
76	Experimental Study on Falling Process of Melt Electrospinning Fiber. Key Engineering Materials, 2013, 561, 36-40.	0.4	2
77	Effect of Different Factors on Falling Process of Melt Electrospinning Jet. Materials Science Forum, 2013, 745-746, 407-411.	0.3	4
78	Simulation on Electrical Field Distribution and Fiber Falls in Melt Electrospinning. Journal of Nanoscience and Nanotechnology, 2013, 13, 4680-4685.	0.9	18
79	Morphologies and crystal structures of styrene–acrylonitrile/isotactic polypropylene ultrafine fibers fabricated by melt electrospinning. Polymer Engineering and Science, 2013, 53, 2674-2682.	1.5	32
80	Solvent-free preparation of polylactic acid fibers by melt electrospinning using umbrella-like spray head and alleviation of problematic thermal degradation. Journal of the Serbian Chemical Society, 2012, 77, 1071-1082.	0.4	30
81	Simulation on Effect of Five Kinds of Belt Structures on Tire Performance. Key Engineering Materials, 2012, 501, 151-155.	0.4	0
82	Orthogonal design study on factors affecting the degradation of polylactic acid fibers of melt electrospinning. Journal of Applied Polymer Science, 2012, 125, 2652-2658.	1.3	25
83	Dissipative particle dynamics simulation on the fiber dropping process of melt electrospinning. Journal of Materials Science, 2011, 46, 7877-7882.	1.7	21
84	Gas barrier and morphology characteristics of linear low-density polyethylene and two different polypropylene films. Polymer Bulletin, 2011, 67, 1293-1309.	1.7	21
85	Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. Journal of Applied Polymer Science, 2011, 120, 592-598.	1.3	75
86	Theoretical study on the thermal decomposition mechanism of 3,3′-dinitro-4,4′-azoxyfurazan. Computational and Theoretical Chemistry, 2011, 963, 135-140.	1.1	13
87	Finite Element Analysis of Performance for Radial Tires, Part I: Model, Material Constants. Advanced Materials Research, 2011, 221, 165-169.	0.3	1
88	Experimental Study of Melt Electrospinning in Parallel Electrical Field. Advanced Materials Research, 2011, 221, 111-116.	0.3	10
89	Main chain and segmental dynamics of semi interpenetrating polymer networks based on polyisoprene and poly(methyl methacrylate). Polymer, 2010, 51, 2390-2402.	1.8	27
90	Influences of three kinds of springs on the retraction of a polymer ellipsoid in dissipative particle dynamics simulation. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2484-2489.	2.4	4

#	Article	IF	CITATIONS
91	Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polymer Engineering and Science, 2010, 50, 2074-2078.	1.5	63
92	Micelle Formation and Gelation of (PEGâ´'P(MA-POSS)) Amphiphilic Block Copolymers via Associative Hydrophobic Effects. Langmuir, 2010, 26, 11763-11773.	1.6	86
93	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
94	A study on the microstructure of a nitrate ester plasticized polyether propellant dissolved in HCl and KOH solutions. Journal of the Serbian Chemical Society, 2010, 75, 987-996.	0.4	5
95	An SEM and EDS study of the microstructure of nitrate ester plasticized polyether propellants. Journal of the Serbian Chemical Society, 2010, 75, 369-376.	0.4	5
96	HOMOLYTIC C – H BOND DISSOCIATION ENERGIES OF HTPB BINDER NETWORK. Journal of Theoretical and Computational Chemistry, 2009, 08, 519-528.	1.8	3
97	Study on Oil Resistance Properties of Flexible PVC/PNBR Blends. Advanced Materials Research, 2009, 87-88, 134-136.	0.3	1
98	Melt electrospinning of lowâ€density polyethylene having a lowâ€melt flow index. Journal of Applied Polymer Science, 2009, 114, 166-175.	1.3	124
99	Abrasion resistance of thermoplastic polyurethane materials blended with ethylene–propylene–diene monomer rubber. Journal of Applied Polymer Science, 2008, 110, 1851-1857.	1.3	26
100	Mesoscale dynamic simulation on phase separation between plasticizer and binder in NEPE propellants. Polymer, 2008, 49, 2775-2780.	1.8	27
101	Studies on some factors influencing the interfacial tension measurement of polymers. Polymer, 2005, 46, 2811-2816.	1.8	16
102	Mesoscale simulation on the shape evolution of polymer drop and initial geometry influence. Polymer, 2004, 45, 6985-6991.	1.8	12
103	Research on Mechanical Performance of Roof Tiles Made of Tire Powder and Waste Plastic. Advanced Materials Research, 0, 87-88, 329-332.	0.3	6
104	Encapsulating and Manufacture Technology Study of Impact-Resisting, Enclosed Soft Aramid Vesicle. Materials Science Forum, 0, 686, 752-757.	0.3	0
105	Finite Element Analysis of Performance for Radial Tires, Part II: Simulation Results. Advanced Materials Research, 0, 221, 170-174.	0.3	1
106	Factors Influencing Diameter of Polypropylene Fiber in Melt Electrospinning. Advanced Materials Research, 0, 221, 129-134.	0.3	12
107	Effect of Plasticizer and Load on Melt Electrospinning of PLA. Key Engineering Materials, 0, 501, 32-36.	0.4	10
108	Finite Element Analysis for Effect of Double Firm Rings on Grounding Performance of Aircraft Tire. Key Engineering Materials, 0, 561, 250-254.	0.4	1

#	Article	IF	CITATIONS
109	The Preparation of Polypropylene/Polyvinyl Alcohol Ultra-Fine Fibers Using Melt Electrospinning Method. Key Engineering Materials, 0, 561, 8-12.	0.4	5
110	Finite Element Analysis for Effect of Different Carcass on Performance of Aircraft Tire. Key Engineering Materials, 0, 561, 422-427.	0.4	0
111	Research on the Modification of Waterborne UV-Curable Polyurethane Acrylate. Advanced Materials Research, 0, 864-867, 698-701.	0.3	1
112	Competitive effects of centrifugal force and electric field force on centrifugal electrospinning. Iranian Polymer Journal (English Edition), 0, , .	1.3	3