
Cyrille J Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2691321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet, The, 2021, 398, 2093-2100.	13.7	748
2	TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature, 2019, 571, 265-269.	27.8	581
3	Enhanced Antitumor Activity of Murine-Human Hybrid T-Cell Receptor (TCR) in Human Lymphocytes Is Associated with Improved Pairing and TCR/CD3 Stability. Cancer Research, 2006, 66, 8878-8886.	0.9	394
4	Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. Journal of Clinical Investigation, 2015, 125, 3981-3991.	8.2	328
5	Enhanced Antitumor Activity of T Cells Engineered to Express T-Cell Receptors with a Second Disulfide Bond. Cancer Research, 2007, 67, 3898-3903.	0.9	315
6	Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes. Journal of Immunology, 2006, 177, 6548-6559.	0.8	287
7	High-Efficiency Transfection of Primary Human and Mouse T Lymphocytes Using RNA Electroporation. Molecular Therapy, 2006, 13, 151-159.	8.2	260
8	Nanomedicine for Cancer Immunotherapy: Tracking Cancer-Specific T-Cells <i>in Vivo</i> with Gold Nanoparticles and CT Imaging. ACS Nano, 2015, 9, 6363-6372.	14.6	201
9	Recognition of Fresh Human Tumor by Human Peripheral Blood Lymphocytes Transduced with a Bicistronic Retroviral Vector Encoding a Murine Anti-p53 TCR. Journal of Immunology, 2005, 175, 5799-5808.	0.8	121
10	Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens. Cancer Immunology Research, 2016, 4, 669-678.	3.4	117
11	Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood, 2007, 109, 5168-5177.	1.4	101
12	Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy. ACS Nano, 2017, 11, 11127-11134.	14.6	101
13	Increased RNA Editing May Provide a Source for Autoantigens in Systemic Lupus Erythematosus. Cell Reports, 2018, 23, 50-57.	6.4	91
14	Extrathymic Generation of Tumor-Specific T Cells from Genetically Engineered Human Hematopoietic Stem Cells via Notch Signaling. Cancer Research, 2007, 67, 2425-2429.	0.9	87
15	Human T Cells Engineered To Express a Programmed Death 1/28 Costimulatory Retargeting Molecule Display Enhanced Antitumor Activity. Journal of Immunology, 2013, 191, 4121-4129.	0.8	87
16	Lentiviral Vector Design for Optimal T Cell Receptor Gene Expression in the Transduction of Peripheral Blood Lymphocytes and Tumor-Infiltrating Lymphocytes. Human Gene Therapy, 2009, 20, 630-640.	2.7	70
17	Selected Murine Residues Endow Human TCR with Enhanced Tumor Recognition. Journal of Immunology, 2010, 184, 6232-6241.	0.8	69
18	In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications. Scientific Reports, 2015, 5, 15400.	3.3	65

CYRILLE J COHEN

#	Article	IF	CITATIONS
19	Incorporation of Transmembrane Hydrophobic Mutations in the TCR Enhance Its Surface Expression and T Cell Functional Avidity. Journal of Immunology, 2012, 188, 5538-5546.	0.8	57
20	Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System. Molecular Therapy, 2016, 24, 1078-1089.	8.2	51
21	A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. , 2019, 7, 243.		51
22	CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 1833-1847.	4.2	43
23	Relationship of p53 Overexpression on Cancers and Recognition by Anti-p53 T Cell Receptor-Transduced T Cells. Human Gene Therapy, 2008, 19, 1219-1231.	2.7	38
24	Genetically modulating T-cell function to target cancer. Seminars in Cancer Biology, 2012, 22, 14-22.	9.6	36
25	Targeting glycosylated antigens on cancer cells using siglecâ€7/9â€based CAR Tâ€cells. Molecular Carcinogenesis, 2020, 59, 713-723.	2.7	36
26	Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunology, Immunotherapy, 2010, 59, 1551-1560.	4.2	35
27	TLR4 Expression Is Associated with Left Ventricular Dysfunction in Patients Undergoing Coronary Artery Bypass Surgery. PLoS ONE, 2015, 10, e0120175.	2.5	27
28	An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget, 2014, 5, 10949-10958.	1.8	25
29	Enhanced antitumor activity mediated by human 4â€∃BBâ€engineered T cells. International Journal of Cancer, 2013, 133, 2903-2913.	5.1	22
30	Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor. Frontiers in Immunology, 2017, 8, 1212.	4.8	20
31	Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides. , 2019, 7, 135.		18
32	The mutational status of p53 can influence its recognition by human T-cells. OncoImmunology, 2017, 6, e1285990.	4.6	17
33	T-cells "à la CAR-T(e)―– Genetically engineering T-cell response against cancer. Advanced Drug Delivery Reviews, 2019, 141, 23-40.	13.7	17
34	Out of the bitter came forth sweet. Oncolmmunology, 2014, 3, e27399.	4.6	15
35	Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. Journal of Clinical Investigation, 2021, 131, .	8.2	15
36	How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Frontiers in Immunology, 2012, 3, 186.	4.8	13

CYRILLE J COHEN

#	Article	IF	CITATIONS
37	A novel role for an old target: CD45 for breast cancer immunotherapy. Oncolmmunology, 2021, 10, 1929725.	4.6	12
38	Immune Monitoring of Patients Treated With a Whole-Cell Melanoma Vaccine Engineered to Express 4-1BBL. Journal of Immunotherapy, 2016, 39, 321-328.	2.4	10
39	Preclinical evaluation and structural optimization of anti-BCMA CAR to target multiple myeloma. Haematologica, 2022, 107, 2395-2407.	3.5	7
40	Downregulation of CD45 Signaling in COVID-19 Patients Is Reversed by C24D, a Novel CD45 Targeting Peptide. Frontiers in Medicine, 2021, 8, 675963.	2.6	6
41	Noninvasive Tracking of Natural Killer Cells Using Gold Nanoparticles. ACS Omega, 2021, 6, 28507-28514.	3.5	5
42	Engineering T-Cell Specificity Genetically to Generate Anti-melanoma Reactivity. Methods in Molecular Biology, 2015, , 1.	0.9	3
43	MHC-multimer guided isolation of neoepitopes specific T cells as a potent-personalized cancer treatment strategy. Oncolmmunology, 2016, 5, e1159370.	4.6	3
44	Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. Experientia Supplementum (2012), 2022, 113, 253-294.	0.9	1