
## Hugo Valin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2690967/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock<br>systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>20888-20893.                | 7.1  | 867       |
| 2  | A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals<br>without negative emission technologies. Nature Energy, 2018, 3, 515-527.                                                              | 39.5 | 733       |
| 3  | Land-use futures in the shared socio-economic pathways. Global Environmental Change, 2017, 42, 331-345.                                                                                                                               | 7.8  | 645       |
| 4  | The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 2017, 42, 251-267.                                                                  | 7.8  | 590       |
| 5  | Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461.                                                                                                                                | 18.8 | 588       |
| 6  | Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.                                               | 7.1  | 568       |
| 7  | Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.                                                                                                                               | 27.8 | 413       |
| 8  | Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3709-3714.                                                                | 7.1  | 407       |
| 9  | The future of food demand: understanding differences in global economic models. Agricultural Economics (United Kingdom), 2014, 45, 51-67.                                                                                             | 3.9  | 357       |
| 10 | Risk of increased food insecurity under stringent global climate change mitigation policy. Nature<br>Climate Change, 2018, 8, 699-703.                                                                                                | 18.8 | 319       |
| 11 | Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.                                                                                                                            | 14.0 | 285       |
| 12 | Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems, 2011, 104, 204-215.                                                                         | 6.1  | 226       |
| 13 | Land-use change trajectories up to 2050: insights from a global agro-economic model comparison.<br>Agricultural Economics (United Kingdom), 2014, 45, 69-84.                                                                          | 3.9  | 220       |
| 14 | The potential of future foods for sustainable and healthy diets. Nature Sustainability, 2018, 1, 782-789.                                                                                                                             | 23.7 | 197       |
| 15 | Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic<br>Model Intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 3-20.                                                 | 3.9  | 183       |
| 16 | Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land<br>from deforestation. Proceedings of the National Academy of Sciences of the United States of America,<br>2014, 111, 7236-7241. | 7.1  | 182       |
| 17 | Can N <sub>2</sub> O emissions offset the benefits from soil organic carbon storage?. Global Change<br>Biology, 2021, 27, 237-256.                                                                                                    | 9.5  | 174       |
| 18 | Agriculture and climate change in global scenarios: why don't the models agree. Agricultural<br>Economics (United Kingdom), 2014, 45, 85-101.                                                                                         | 3.9  | 172       |

Hugo Valin

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reducing greenhouse gas emissions in agriculture without compromising food security?.<br>Environmental Research Letters, 2017, 12, 105004.                                                      | 5.2  | 172       |
| 20 | Assessing the land resource–food price nexus of the Sustainable Development Goals. Science<br>Advances, 2016, 2, e1501499.                                                                      | 10.3 | 162       |
| 21 | Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?. Environmental Research Letters, 2013, 8, 035019.                         | 5.2  | 144       |
| 22 | Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate<br>Change, 2019, 9, 66-72.                                                                | 18.8 | 139       |
| 23 | Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet<br>Planetary Health, The, 2021, 5, e50-e62.                                                     | 11.4 | 135       |
| 24 | Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.                                                                                                         | 12.8 | 123       |
| 25 | How to spend a dwindling greenhouse gas budget. Nature Climate Change, 2018, 8, 7-10.                                                                                                           | 18.8 | 119       |
| 26 | Global hunger and climate change adaptation through international trade. Nature Climate Change,<br>2020, 10, 829-835.                                                                           | 18.8 | 117       |
| 27 | China's future food demand and its implications for trade and environment. Nature Sustainability, 2021, 4, 1042-1051.                                                                           | 23.7 | 112       |
| 28 | Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs.<br>Biomass and Bioenergy, 2013, 57, 86-96.                                                       | 5.7  | 110       |
| 29 | Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse<br>Gas Emissions. American Journal of Agricultural Economics, 2013, 95, 442-448.             | 4.3  | 102       |
| 30 | Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental<br>Research Letters, 2018, 13, 064021.                                                          | 5.2  | 93        |
| 31 | Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified West African food and climate futures in a global context. Global Environmental Change, 2017, 45, 227-242. | 7.8  | 92        |
| 32 | The role of trade in the greenhouse gas footprints of EU diets. Global Food Security, 2018, 19, 48-55.                                                                                          | 8.1  | 89        |
| 33 | Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 103-116.                              | 3.9  | 85        |
| 34 | Healthy, affordable and climate-friendly diets in India. Global Environmental Change, 2018, 49, 154-165.                                                                                        | 7.8  | 77        |
| 35 | CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 2021, 150, 111398.                       | 16.4 | 75        |
| 36 | Comparing supply-side specifications in models of global agriculture and the food system.<br>Agricultural Economics (United Kingdom), 2014, 45, 21-35.                                          | 3.9  | 68        |

HUGO VALIN

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The impact of climate change on Brazil's agriculture. Science of the Total Environment, 2020, 740, 139384.                                                                                                              | 8.0  | 67        |
| 38 | Climate change induced transformations of agricultural systems: insights from a global model.<br>Environmental Research Letters, 2014, 9, 124018.                                                                       | 5.2  | 64        |
| 39 | Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems and Environment, 2017, 240, 135-147.                      | 5.3  | 62        |
| 40 | Land-based climate change mitigation measures can affect agricultural markets and food security.<br>Nature Food, 2022, 3, 110-121.                                                                                      | 14.0 | 61        |
| 41 | Alternative U.S. biofuel mandates and global CHC emissions: The role of land use change, crop management and yield growth. Energy Policy, 2013, 57, 602-614.                                                            | 8.8  | 57        |
| 42 | Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB<br>Bioenergy, 2015, 7, 422-437.                                                                                             | 5.6  | 54        |
| 43 | MODELING LAND-USE CHANGES IN A GLOBAL CGE: ASSESSING THE EU BIOFUEL MANDATES WITH THE MIRAGE-BioF MODEL. Climate Change Economics, 2012, 03, 1250017.                                                                   | 5.0  | 53        |
| 44 | Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature<br>Communications, 2018, 9, 1060.                                                                                              | 12.8 | 52        |
| 45 | Future environmental and agricultural impacts of Brazil's Forest Code. Environmental Research<br>Letters, 2018, 13, 074021.                                                                                             | 5.2  | 51        |
| 46 | Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.                                                                                                                      | 14.0 | 51        |
| 47 | Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability, 2019, 2, 826-833.                                                                                       | 23.7 | 49        |
| 48 | Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C<br>assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,<br>2018, 376, 20160455. | 3.4  | 48        |
| 49 | Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand.<br>Biomass and Bioenergy, 2017, 96, 19-27.                                                                                 | 5.7  | 36        |
| 50 | Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy, 2019, 134, 110958.                                                                                               | 8.8  | 36        |
| 51 | Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 2020, 25, 100358.                                                                                                | 8.1  | 35        |
| 52 | Land-based climate change mitigation potentials within the agenda for sustainable development.<br>Environmental Research Letters, 2021, 16, 024006.                                                                     | 5.2  | 32        |
| 53 | How effective are the sustainability criteria accompanying the European Union 2020 biofuel targets?.<br>GCB Bioenergy, 2013, 5, 306-314.                                                                                | 5.6  | 31        |
| 54 | Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios. Environmental Research Letters, 2018, 13, 064019.                                    | 5.2  | 27        |

HUGO VALIN

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Global food markets, trade and the cost of climate change adaptation. Food Security, 2014, 6, 29-44.                                                                                                                                                          | 5.3  | 26        |
| 56 | How can land-use modelling tools inform bioenergy policies?. Interface Focus, 2011, 1, 212-223.                                                                                                                                                               | 3.0  | 25        |
| 57 | A Global-Level Model of the Potential Impacts of Climate Change on Child Stunting via Income and Food Price in 2030. Environmental Health Perspectives, 2018, 126, 97007.                                                                                     | 6.0  | 22        |
| 58 | Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming. World Development, 2021, 146, 105582.                                                                                                                      | 4.9  | 22        |
| 59 | Integrated Management of Land Use Systems under Systemic Risks and Security Targets: A Stochastic<br>Global Biosphere Management Model. Journal of Agricultural Economics, 2016, 67, 584-601.                                                                 | 3.5  | 20        |
| 60 | The market impacts of shortening feed supply chains in Europe. Food Security, 2018, 10, 1401-1410.                                                                                                                                                            | 5.3  | 20        |
| 61 | Stakeholder-designed scenarios for global food security assessments. Global Food Security, 2020, 24,<br>100352.                                                                                                                                               | 8.1  | 18        |
| 62 | Using social media audience data to analyse the drivers of low-carbon diets. Environmental Research<br>Letters, 2021, 16, 074001.                                                                                                                             | 5.2  | 15        |
| 63 | Are scenario projections overly optimistic about future yield progress?. Global Environmental<br>Change, 2020, 64, 102120.                                                                                                                                    | 7.8  | 11        |
| 64 | International trade is a key component of climate change adaptation. Nature Climate Change, 2021, 11, 915-916.                                                                                                                                                | 18.8 | 7         |
| 65 | Dynamic Merge of the Global and Local Models for Sustainable Land Use Planning with Regard for<br>Global Projections from GLOBIOM and Local Technical–Economic Feasibility and Resource<br>Constraints*. Cybernetics and Systems Analysis, 2017, 53, 176-185. | 0.7  | 4         |
| 66 | How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.                                                                                     | 5.2  | 4         |
| 67 | Current issues and uncertainties in estimating global land availability for biofuel production.<br>Biofuels, 2013, 4, 343-345.                                                                                                                                | 2.4  | 3         |
| 68 | Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022,<br>4, 100110.                                                                                                                                           | 3.5  | 3         |
| 69 | Evaluating the environmental cost of biofuels policy: An illustration with bioethanol. International Economics, 2010, 122, 89-120.                                                                                                                            | 3.1  | 2         |
| 70 | Potential impacts of climate change on child stunting via income and food price in 2030: a global-level<br>model. Lancet Planetary Health, The, 2019, 3, S1.                                                                                                  | 11.4 | 2         |
| 71 | Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate<br>Change, 2020, 10, 420-421.                                                                                                                                | 18.8 | 2         |
| 72 | Multiple rotations of Gaussian quadratures: An efficient method for uncertainty analyses in large-scale simulation models. Environmental Modelling and Software, 2021, 136, 104929.                                                                           | 4.5  | 1         |