Zujin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2690876/publications.pdf Version: 2024-02-01

		10373	19726
278	17,559	72	117
papers	citations	h-index	g-index
291	291	291	10813
all docs	docs citations	times ranked	citing authors

Ζιιινι Ζηλο

#	Article	IF	CITATIONS
1	Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 23726.	6.7	761
2	Aggregation-induced emission of siloles. Chemical Science, 2015, 6, 5347-5365.	3.7	487
3	Achieving Highâ€Performance Nondoped OLEDs with Extremely Small Efficiency Rollâ€Off by Combining Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2017, 27, 1606458.	7.8	386
4	Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chemical Communications, 2010, 46, 2221.	2.2	352
5	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition, 2017, 56, 12971-12976.	7.2	320
6	Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chemical Communications, 2010, 46, 686-688.	2.2	313
7	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	7.8	302
8	Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chemical Science, 2015, 6, 1932-1937.	3.7	259
9	Ultrabright Organic Dots with Aggregationâ€Induced Emission Characteristics for Realâ€Time Twoâ€Photon Intravital Vasculature Imaging. Advanced Materials, 2013, 25, 6083-6088.	11.1	255
10	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2018, 57, 9290-9294.	7.2	219
11	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.	3.7	216
12	Robust Luminescent Materials with Prominent Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence for High-Performance Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 3623-3631.	3.2	215
13	Unusual Aggregationâ€Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. Angewandte Chemie - International Edition, 2015, 54, 14492-14497.	7.2	207
14	Pyrene-substituted ethenes: aggregation-enhanced excimer emission and highly efficient electroluminescence. Journal of Materials Chemistry, 2011, 21, 7210.	6.7	206
15	Structural Modulation of Solid‧tate Emission of 2,5â€Bis(trialkylsilylethynyl)â€3,4â€diphenylsiloles. Angewandte Chemie - International Edition, 2009, 48, 7608-7611.	7.2	205
16	Efficient Light Emitters in the Solid State: Synthesis, Aggregationâ€Induced Emission, Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores and Multiple Triarylvinyl Peripherals. Advanced Functional Materials, 2012, 22, 378-389.	7.8	198
17	Manipulation of Charge and Exciton Distribution Based on Blue Aggregationâ€Induced Emission Fluorophors: A Novel Concept to Achieve Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 776-783.	7.8	194
18	Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chemical Science, 2020, 11, 3405-3417.	3.7	182

#	Article	IF	CITATIONS
19	Spontaneous Amino-yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific Poly(β-aminoacrylate)s. Journal of the American Chemical Society, 2017, 139, 5437-5443.	6.6	177
20	Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chemical Communications, 2011, 47, 8847.	2.2	175
21	Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9, 4564.	1.2	175
22	Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties?. Journal of Materials Chemistry C, 2017, 5, 9242-9246.	2.7	164
23	Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano, 2020, 14, 854-866.	7.3	161
24	A luminescent metal–organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chemical Communications, 2015, 51, 1677-1680.	2.2	159
25	Purely Organic Materials with Aggregationâ€Induced Delayed Fluorescence for Efficient Nondoped OLEDs. Advanced Optical Materials, 2018, 6, 1800264.	3.6	156
26	Aggregation-Induced Emission of Tetraarylethene Luminogens. Current Organic Chemistry, 2010, 14, 2109-2132.	0.9	155
27	A highly luminescent entangled metal–organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chemical Communications, 2017, 53, 9975-9978.	2.2	154
28	Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching?. Materials Chemistry Frontiers, 2017, 1, 1125-1129.	3.2	150
29	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie - International Edition, 2021, 60, 23635-23640.	7.2	147
30	Catalyst-Free, Atom-Economic, Multicomponent Polymerizations of Aromatic Diynes, Elemental Sulfur, and Aliphatic Diamines toward Luminescent Polythioamides. Macromolecules, 2015, 48, 7747-7754.	2.2	145
31	Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. Journal of Materials Chemistry C, 2017, 5, 4775-4779.	2.7	141
32	A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media. Journal of Materials Chemistry C, 2018, 6, 2983-2988.	2.7	133
33	Efficient Bipolar Blue AlEgens for Highâ€Performance Nondoped Blue OLEDs and Hybrid White OLEDs. Advanced Functional Materials, 2018, 28, 1803369.	7.8	130
34	Nanocrystallization: A Unique Approach to Yield Bright Organic Nanocrystals for Biological Applications. Advanced Materials, 2017, 29, 1604100.	11.1	126
35	Improving Imageâ€Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and Photodynamic Therapies Based on a Multifunctional NIR AIEgen. Advanced Materials, 2021, 33, e2101158.	11.1	125
36	From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chemical Communications, 2013, 49, 2491.	2.2	123

#	Article	IF	CITATIONS
37	Creation of Bifunctional Materials: Improve Electronâ€Transporting Ability of Light Emitters Based on AIEâ€Active 2,3,4,5â€Tetraphenylsiloles. Advanced Functional Materials, 2014, 24, 3621-3630.	7.8	123
38	Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials, 2019, 218, 119330.	5.7	118
39	Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nature Communications, 2020, 11, 2617.	5.8	117
40	Through-Space Conjugation: A Thriving Alternative for Optoelectronic Materials. CCS Chemistry, 2019, 1, 181-196.	4.6	114
41	Rational Design of Aggregation-Induced Emission Luminogen with Weak Electron Donor–Acceptor Interaction to Achieve Highly Efficient Undoped Bilayer OLEDs. ACS Applied Materials & Interfaces, 2014, 6, 17215-17225.	4.0	113
42	Metal-Free Multicomponent Tandem Polymerizations of Alkynes, Amines, and Formaldehyde toward Structure- and Sequence-Controlled Luminescent Polyheterocycles. Journal of the American Chemical Society, 2017, 139, 5075-5084.	6.6	113
43	Mechanical Insights into Aggregationâ€induced Delayed Fluorescence Materials with Antiâ€Kasha Behavior. Advanced Science, 2019, 6, 1801629.	5.6	111
44	Steric Hindrance, Electronic Communication, and Energy Transfer in the Photo- and Electroluminescence Processes of Aggregation-Induced Emission Luminogens. Journal of Physical Chemistry C, 2010, 114, 7963-7972.	1.5	109
45	A Multifunctional Blueâ€Emitting Material Designed via Tuning Distribution of Hybridized Excitedâ€State for Highâ€Performance Blue and Hostâ€Sensitized OLEDs. Advanced Functional Materials, 2020, 30, 2002323.	7.8	108
46	Organic Dots Based on AlEgens for Twoâ€₽hoton Fluorescence Bioimaging. Small, 2016, 12, 6430-6450.	5.2	107
47	Integration of aggregation-induced emission and delayed fluorescence into electronic donor–acceptor conjugates. Journal of Materials Chemistry C, 2016, 4, 3705-3708.	2.7	107
48	Red/NIRâ€Emissive Benzo[<i>d</i>]imidazoleâ€Cored AIEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. Advanced Materials, 2018, 30, e1805220.	11.1	106
49	Stereoselective Synthesis, Efficient Light Emission, and High Bipolar Charge Mobility of Chiasmatic Luminogens. Advanced Materials, 2011, 23, 5430-5435.	11.1	105
50	Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. Journal of Materials Chemistry, 2012, 22, 4527.	6.7	103
51	Aggregation-induced emission, mechanochromism and blue electroluminescence of carbazole and triphenylamine-substituted ethenes. Journal of Materials Chemistry C, 2014, 2, 4320-4327.	2.7	102
52	Structural and Theoretical Insights into the AIE Attributes of Phosphindole Oxide: The Balance Between Rigidity and Flexibility. Chemistry - A European Journal, 2015, 21, 4440-4449.	1.7	98
53	Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chemical Science, 2016, 7, 4527-4536.	3.7	97
54	Efficient Red/Nearâ€Infrared Fluorophores Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiophene 1,1,5,5â€Tetraoxide for Targeted Photodynamic Therapy and In Vivo Twoâ€Photon Fluorescence Bioimaging. Advanced Functional Materials, 2018, 28, 1706945.	7.8	96

#	Article	IF	CITATIONS
55	AlEgens based on main group heterocycles. Journal of Materials Chemistry C, 2018, 6, 11835-11852.	2.7	96
56	Self-Guiding Polymeric Prodrug Micelles with Two Aggregation-Induced Emission Photosensitizers for Enhanced Chemo-Photodynamic Therapy. ACS Nano, 2021, 15, 3026-3037.	7.3	94
57	Creation of Efficient Blue Aggregation-Induced Emission Luminogens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 17592-17601.	4.0	93
58	Multichannel Conductance of Folded Singleâ€Molecule Wires Aided by Throughâ€&pace Conjugation. Angewandte Chemie - International Edition, 2015, 54, 4231-4235.	7.2	92
59	Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.	4.0	91
60	Aggregationâ€Induced Emission and Efficient Solidâ€State Fluorescence from Tetraphenyletheneâ€Based N,Câ€Chelate Fourâ€Coordinate Organoborons. Chemistry - A European Journal, 2013, 19, 11512-11517.	1.7	90
61	Zigzag Molecules from Pyrene-Modified Carbazole Oligomers:  Synthesis, Characterization, and Application in OLEDs. Journal of Organic Chemistry, 2008, 73, 594-602.	1.7	87
62	Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization. ACS Applied Materials & Interfaces, 2015, 7, 14965-14974.	4.0	86
63	A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. Journal of Materials Chemistry, 2012, 22, 11018.	6.7	85
64	New AlEgens with delayed fluorescence for fluorescence imaging and fluorescence lifetime imaging of living cells. Materials Chemistry Frontiers, 2017, 1, 2554-2558.	3.2	85
65	Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chemical Communications, 2013, 49, 594-596.	2.2	82
66	Synergistic tuning of the optical and electrical performance of AlEgens with a hybridized local and charge-transfer excited state. Journal of Materials Chemistry C, 2019, 7, 6359-6368.	2.7	82
67	A Multifunctional Bipolar Luminogen with Delayed Fluorescence for Highâ€Performance Monochromatic and Colorâ€Stable Warmâ€White OLEDs. Advanced Functional Materials, 2020, 30, 2000019.	7.8	82
68	Improving Electron Mobility of Tetraphenylethene-Based AIEgens to Fabricate Nondoped Organic Light-Emitting Diodes with Remarkably High Luminance and Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 16799-16808.	4.0	81
69	A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Communications Biology, 2018, 1, 202.	2.0	81
70	Aggregation-Induced Emission-Responsive Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 6706-6720.	3.2	81
71	Red Emissive Biocompatible Nanoparticles from Tetraphenyletheneâ€Decorated BODIPY Luminogens for Twoâ€Photon Excited Fluorescence Cellular Imaging and Mouse Brain Blood Vascular Visualization. Particle and Particle Systems Characterization, 2014, 31, 481-491.	1.2	78
72	Siloleâ€Based Red Fluorescent Organic Dots for Bright Twoâ€Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging. Small, 2016, 12, 782-792.	5.2	74

#	Article	IF	CITATIONS
73	Tumorâ€Triggered Disassembly of a Multipleâ€Agentâ€Therapy Probe for Efficient Cellular Internalization. Angewandte Chemie - International Edition, 2020, 59, 20405-20410.	7.2	74
74	Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials, 2018, 187, 47-54.	5.7	73
75	Solution-Processable Stiff Dendrimers: Synthesis, Photophysics, Film Morphology, and Electroluminescence. Journal of Organic Chemistry, 2009, 74, 383-395.	1.7	72
76	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	7.3	72
77	Type I AIE photosensitizers: Mechanism and application. View, 2022, 3, 20200121.	2.7	72
78	Quencher Group Induced High Specificity Detection of Telomerase in Clear and Bloody Urines by AlEgens. Analytical Chemistry, 2015, 87, 9487-9493.	3.2	70
79	Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale, 2016, 8, 15027-15032.	2.8	70
80	Universal Bipolar Host Materials for Blue, Green, and Red Phosphorescent OLEDs with Excellent Efficiencies and Small-Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2019, 11, 27134-27144.	4.0	68
81	Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria. ACS Nano, 2022, 16, 9130-9141.	7.3	68
82	Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 10949.	6.7	67
83	Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chemical Science, 2016, 7, 5573-5580.	3.7	67
84	Photomechanical Luminescence from Through‧pace Conjugated AlEgens. Angewandte Chemie - International Edition, 2020, 59, 8828-8832.	7.2	67
85	High-Performance Doping-Free Hybrid White OLEDs Based on Blue Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces, 2017, 9, 34162-34171.	4.0	66
86	A Facile and Versatile Approach to Efficient Luminescent Materials for Applications in Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2012, 7, 484-488.	1.7	65
87	Synthesis, Structure, Aggregationâ€Induced Emission, Selfâ€Assembly, and Electron Mobility of 2,5â€Bis(triphenylsilylethynyl)â€3,4â€diphenylsiloles. Chemistry - A European Journal, 2011, 17, 5998-6008.	1.7	62
88	Stereoselective synthesis of folded luminogens with arene–arene stacking interactions and aggregation-enhanced emission. Chemical Communications, 2014, 50, 1131-1133.	2.2	62
89	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie, 2017, 129, 13151-13156.	1.6	62
90	Excellent n-type light emitters based on AIE-active silole derivatives for efficient simplified organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 3690-3698.	2.7	62

#	Article	IF	CITATIONS
91	Intriguing "chameleon―fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials, 2019, 203, 43-51.	5.7	61
92	9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano, 2021, 15, 20042-20055.	7.3	61
93	Insight into the strong aggregation-induced emission of low-conjugated racemic C6-unsubstituted tetrahydropyrimidines through crystal-structure–property relationship of polymorphs. Chemical Science, 2015, 6, 4690-4697.	3.7	59
94	2,5â€Difluorenylâ€Substituted Siloles for the Fabrication of Highâ€Performance Yellow Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2014, 20, 1931-1939.	1.7	58
95	<i>In situ</i> encapsulation of pyridine-substituted tetraphenylethene cations in metal–organic framework for the detection of antibiotics in aqueous medium. Journal of Materials Chemistry C, 2019, 7, 8383-8388.	2.7	58
96	Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices. PhotoniX, 2020, 1, .	5.5	58
97	Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. Science Advances, 2021, 7, eabj2504.	4.7	58
98	Oligo(2,7-fluorene ethynylene)s with Pyrene Moieties:  Synthesis, Characterization, Photoluminescence, and Electroluminescence. Journal of Organic Chemistry, 2007, 72, 8345-8353.	1.7	57
99	Toward Achieving Single-Molecule White Electroluminescence from Dual Emission of Fluorescence and Phosphorescence. Chemistry of Materials, 2020, 32, 4038-4044.	3.2	57
100	Robust Red Organic Nanoparticles for In Vivo Fluorescence Imaging of Cancer Cell Progression in Xenografted Zebrafish. Advanced Functional Materials, 2017, 27, 1701418.	7.8	56
101	Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients. ACS Sensors, 2016, 1, 572-578.	4.0	55
102	Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space Conjugated Hexaphenylbenzene. Nano Letters, 2018, 18, 4200-4205.	4.5	55
103	Gigantic Two-Photon Absorption Cross Sections and Strong Two-Photon Excited Fluorescence in Pyrene Core Dendrimers with Fluorene/Carbazole as Dendrons and Acetylene as Linkages. Journal of Physical Chemistry B, 2010, 114, 11737-11745.	1.2	54
104	Conjugation versus rotation: good conjugation weakens the aggregation-induced emission effect of siloles. Chemical Communications, 2014, 50, 4500.	2.2	53
105	Multicomponent Tandem Reactions and Polymerizations of Alkynes, Carbonyl Chlorides, and Thiols. Macromolecules, 2015, 48, 1941-1951.	2.2	53
106	Fluorescence visualization of crystal formation and transformation processes of organic luminogens with crystallization-induced emission characteristics. Materials Chemistry Frontiers, 2018, 2, 180-188.	3.2	53
107	Cu(<scp>i</scp>)-Catalyzed amino-yne click polymerization. Polymer Chemistry, 2016, 7, 7375-7382.	1.9	52
108	Sky-blue nondoped OLEDs based on new AIEgens: ultrahigh brightness, remarkable efficiency and low efficiency roll-off. Materials Chemistry Frontiers, 2017, 1, 176-180.	3.2	51

#	Article	IF	CITATIONS
109	Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Science China Chemistry, 2018, 61, 76-87.	4.2	51
110	Aggregation-Induced Delayed Fluorescence Luminogens with Accelerated Reverse Intersystem Crossing for High-Performance OLEDs. , 2019, 1, 613-619.		51
111	High hole mobility of 1,2-bis[4′-(diphenylamino)biphenyl-4-yl]-1,2-diphenylethene in field effect transistor. Chemical Communications, 2011, 47, 6924.	2.2	50
112	Steric, conjugation and electronic impacts on the photoluminescence and electroluminescence properties of luminogens based on phosphindole oxide. Journal of Materials Chemistry C, 2017, 5, 1836-1842.	2.7	50
113	Colour-tunable dual-mode afterglows and helical-array-induced mechanoluminescence from AIE enantiomers: Effects of molecular arrangement on formation and decay of excited states. Chemical Engineering Journal, 2021, 418, 129167.	6.6	50
114	New Aggregation-Induced Delayed Fluorescence Luminogens With Through-Space Charge Transfer for Efficient Non-doped OLEDs. Frontiers in Chemistry, 2019, 7, 199.	1.8	48
115	Superbase catalyzed regio-selective polyhydroalkoxylation of alkynes: a facile route towards functional poly(vinyl ether)s. Polymer Chemistry, 2017, 8, 2713-2722.	1.9	47
116	Aggregation-induced delayed fluorescence luminogens: the innovation of purely organic emitters for aqueous electrochemiluminescence. Chemical Science, 2021, 12, 13283-13291.	3.7	47
117	The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs. Journal of Materials Chemistry C, 2016, 4, 1228-1237.	2.7	46
118	Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian Cancer. ACS Nano, 2020, 14, 14698-14714.	7.3	46
119	Aggregation-induced emission and the working mechanism of 1-benzoyl and 1-benzyl pyrene derivatives. Physical Chemistry Chemical Physics, 2018, 20, 9922-9929.	1.3	45
120	High-contrast luminescence dependent on polymorphism and mechanochromism of AIE-active (4-(phenothiazin-10-yl)phenyl)(pyren-1-yl)methanone. Journal of Materials Chemistry C, 2020, 8, 2460-2466.	2.7	45
121	A novel aggregation-induced emission platform from 2,3-diphenylbenzo[b]thiophene S,S-dioxide. Chemical Communications, 2017, 53, 1463-1466.	2.2	44
122	MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy. Talanta, 2019, 202, 591-599.	2.9	44
123	Oxidation-enhanced emission: exploring novel AlEgens from thieno[3,2-b]thiophene S,S-dioxide. Journal of Materials Chemistry C, 2017, 5, 960-968.	2.7	43
124	Versatile Aggregation-Enhanced Delayed Fluorescence Luminogens Functioning as Emitters and Hosts for High-Performance Organic Light-Emitting Diodes. CCS Chemistry, 2021, 3, 230-240.	4.6	43
125	Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. Journal of Materials Chemistry C, 2016, 4, 2775-2783.	2.7	42
126	Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 330-339.	2.7	42

#	Article	IF	CITATIONS
127	High Stericâ€Hindrance Windmillâ€Type Molecules for Efficient Ultraviolet to Pureâ€Blue Organic Lightâ€Emitting Diodes via Hybridized Local and Chargeâ€Transfer Excitedâ€State. Advanced Functional Materials, 2022, 32, .	7.8	42
128	Synthesis of 1,5-regioregular polytriazoles by efficient NMe ₄ OH-mediated azide–alkyne click polymerization. Polymer Chemistry, 2015, 6, 5545-5549.	1.9	41
129	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	3.7	41
130	Fluorescent Conjugated Dendrimers with Fluorinated Terminal Groups: Nanofiber Formation and Electroluminescence Properties. Organic Letters, 2008, 10, 3041-3044.	2.4	40
131	High Fluorescence Efficiencies and Large Stokes Shifts of Folded Fluorophores Consisting of a Pair of Alkenyl-Tethered, π-Stacked Oligo- <i>p</i> -phenylenes. Organic Letters, 2015, 17, 6174-6177.	2.4	40
132	Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging. Materials Chemistry Frontiers, 2018, 2, 1126-1136.	3.2	39
133	Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers. Nature Communications, 2021, 12, 167.	5.8	39
134	An Effective Design Strategy for Robust Aggregationâ€Induced Delayed Fluorescence Luminogens to Improve Efficiency Stability of Nondoped and Doped OLEDs. Advanced Optical Materials, 2020, 8, 2001027.	3.6	38
135	Multicomponent Tandem Polymerizations of Aromatic Diynes, Terephthaloyl Chloride, and Hydrazines toward Functional Conjugated Polypyrazoles. Macromolecules, 2016, 49, 9291-9300.	2.2	37
136	Light up detection of heparin based on aggregation-induced emission and synergistic counter ion displacement. Chemical Communications, 2017, 53, 4795-4798.	2.2	37
137	Dual-Fluorescent Donorâ`Acceptor Dyad with Tercarbazole Donor and Switchable Imide Acceptor: Promising Structure for an Integrated Logic Gate. Organic Letters, 2007, 9, 547-550.	2.4	36
138	Introductory lecture: recent research progress on aggregation-induced emission. Faraday Discussions, 2017, 196, 9-30.	1.6	36
139	Towards white-light emission of fluorescent polymeric nanoparticles with a single luminogen possessing AIE and TICT properties. Journal of Materials Chemistry C, 2020, 8, 734-741.	2.7	36
140	Achieving Efficient Multichannel Conductance in Through‧pace Conjugated Singleâ€Molecule Parallel Circuits. Angewandte Chemie - International Edition, 2020, 59, 4581-4588.	7.2	36
141	Turnâ€On Circularly Polarized Luminescence in Metal–Organic Frameworks. Advanced Optical Materials, 2021, 9, 2002096.	3.6	36
142	Bipolar Molecules with Hybridized Local and Chargeâ€Transfer State for Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes with EQE of 7.4% and CIE <i>_y</i> Ââ^¼ 0.05. Advanced Optical Materials, 2021, 9, 2100965.	3.6	36
143	Piezochromic luminescent and electroluminescent materials comprised of tetraphenylethene plus spirobifluorene or 9,9-diphenylfluorene. Dyes and Pigments, 2014, 106, 87-93.	2.0	35
144	Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nature Communications, 2021, 12, 6485.	5.8	35

#	Article	IF	CITATIONS
145	Luminescent aggregates of a starburst silole-triphenylamine adduct for sensitive explosive detection. Dyes and Pigments, 2011, 91, 258-263.	2.0	34
146	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie, 2018, 130, 9434-9438.	1.6	34
147	Multifunctional Bipolar Materials Serving as Emitters for Efficient Deepâ€Blue Fluorescent OLEDs and as Hosts for Phosphorescent and White OLEDs. Advanced Optical Materials, 2021, 9, 2001840.	3.6	34
148	Robust Luminescent Molecules with Highâ€Level Reverse Intersystem Crossing for Efficient Near Ultraviolet Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
149	Siloleâ€containing poly(silylenevinylene)s: Synthesis, characterization, aggregationâ€enhanced emission, and explosive detection. Journal of Polymer Science Part A, 2012, 50, 2265-2274.	2.5	33
150	Deep blue fluorescent 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles: Synthesis, structure and aggregation-induced emission. Dyes and Pigments, 2013, 99, 520-525.	2.0	33
151	Modulation of Aggregationâ€Induced Emission and Electroluminescence of Silole Derivatives by a Covalent Bonding Pattern. Chemistry - A European Journal, 2015, 21, 8137-8147.	1.7	33
152	Dimesitylboryl-functionalized tetraphenylethene derivatives: efficient solid-state luminescent materials with enhanced electron-transporting ability for nondoped OLEDs. Journal of Materials Chemistry C, 2016, 4, 5241-5247.	2.7	33
153	Synthesis, aggregation-enhanced emission, polymorphism and piezochromism of TPE-cored foldamers with through-space conjugation. Chemical Communications, 2016, 52, 10842-10845.	2.2	33
154	Efficient red AIEgens based on tetraphenylethene: synthesis, structure, photoluminescence and electroluminescence. Journal of Materials Chemistry C, 2018, 6, 5900-5907.	2.7	33
155	New fluorescent through-space conjugated polymers: synthesis, optical properties and explosive detection. Polymer Chemistry, 2018, 9, 558-564.	1.9	33
156	Truncated Face-Rotating Polyhedra Constructed from Pentagonal Pentaphenylpyrrole through Graph Theory. Journal of the American Chemical Society, 2020, 142, 16223-16228.	6.6	33
157	Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. ACS Applied Materials & Interfaces, 2021, 13, 33574-33583.	4.0	33
158	Nanococktail Based on AlEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics, 2020, 10, 2260-2272.	4.6	32
159	The AlEâ€Active Dualâ€Cationic Molecular Engineering: Synergistic Effect of Dark Toxicity and Phototoxicity for Anticancer Therapy. Advanced Functional Materials, 2021, 31, 2106988.	7.8	32
160	Facile preparation of non-self-quenching fluorescent DNA strands with the degree of labeling up to the theoretic limit. Chemical Communications, 2012, 48, 6360.	2.2	31
161	Aggregationâ€Induced Delayed Fluorescence Luminogens for Efficient Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2019, 14, 828-835.	1.7	31
162	Multicolor AIE polymeric nanoparticles prepared via miniemulsion polymerization for inkjet printing. Dyes and Pigments, 2020, 177, 108287.	2.0	31

#	Article	IF	CITATIONS
163	Bipolar Arylsilane: Synthesis, Photoelectronic Properties, and High-Performance Deep Blue Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 422-429.	2.0	31
164	Bright and biocompatible AIE polymeric nanoparticles prepared from miniemulsion for fluorescence cell imaging. Polymer Chemistry, 2016, 7, 5571-5578.	1.9	30
165	Red AIE conjugated polyelectrolytes for long-term tracing and image-guided photodynamic therapy of tumors. Science China Chemistry, 2020, 63, 1815-1824.	4.2	30
166	Achieving High Electroluminescence Efficiency and High Color Rendering Index for Allâ€Fluorescent White OLEDs Based on an Outâ€ofâ€Phase Sensitizing System. Advanced Functional Materials, 2021, 31, 2103273.	7.8	30
167	Highâ€Performance Orange–Red Organic Lightâ€Emitting Diodes with External Quantum Efficiencies Reaching 33.5% based on Carbonylâ€Containing Delayed Fluorescence Molecules. Advanced Science, 2022, 9, e2104435.	5.6	29
168	AIE conjugated polyelectrolytes based on tetraphenylethene for efficient fluorescence imaging and lifetime imaging of living cells. Polymer Chemistry, 2017, 8, 3862-3866.	1.9	28
169	Nonwoven fabric coated with a tetraphenylethene-based luminescent metal–organic framework for selective and sensitive sensing of nitrobenzene and ammonia. Journal of Materials Chemistry C, 2018, 6, 12371-12376.	2.7	28
170	Spectroscopic and Theoretical Characterization of Through‧pace Conjugation of Foldamers with a Tetraphenylethene Hinge. Chemistry - A European Journal, 2017, 23, 18041-18048.	1.7	27
171	Deep-blue organic light-emitting diodes based on push-pull π-extended imidazole-fluorene hybrids. Dyes and Pigments, 2021, 184, 108754.	2.0	27
172	Throughâ€Space Conjugated Electron Transport Materials for Improving Efficiency and Lifetime of Organic Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200374.	5.6	27
173	Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.	5.2	27
174	Red fluorescent siloles with aggregation-enhanced emission characteristics. Science China Chemistry, 2016, 59, 699-706.	4.2	26
175	Through-Space Conjugation: An Effective Strategy for Stabilizing Intramolecular Charge-Transfer States. Journal of Physical Chemistry Letters, 2019, 10, 2648-2656.	2.1	26
176	Aggregationâ€Induced Delayed Fluorescence. ChemPhotoChem, 2019, 3, 993-999.	1.5	25
177	Promising Applications of AlEgens in Animal Models. Small Methods, 2020, 4, 1900583.	4.6	25
178	Naphthalene-substituted 2,3,4,5-tetraphenylsiloles: synthesis, structure, aggregation-induced emission and efficient electroluminescence. Journal of Materials Chemistry, 2012, 22, 20266.	6.7	24
179	Di(naphthalen-2-yl)-1,2-diphenylethene-based conjugated polymers: aggregation-enhanced emission and explosive detection. Polymer Chemistry, 2015, 6, 7641-7645.	1.9	24
180	3,4-Donor- and 2,5-acceptor-functionalized dipolar siloles: synthesis, structure, photoluminescence and electroluminescence. Journal of Materials Chemistry C, 2017, 5, 4867-4874.	2.7	24

#	Article	IF	CITATIONS
181	Growth methods, enhanced photoluminescence, high hydrophobicity and light scattering of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl nanowires. Organic Electronics, 2012, 13, 1996-2002.	1.4	23
182	A Fully Substituted 3‣ilolene Functions as Promising Building Block for Hyperbranched Poly(Silylenevinylene). Macromolecular Rapid Communications, 2012, 33, 1074-1079.	2.0	23
183	Aggregation-enhanced emission and efficient electroluminescence of conjugated polymers containing tetraphenylethene units. Science China Chemistry, 2013, 56, 1221-1227.	4.2	23
184	Synthesis, Structure, Photoluminescence, and Electroluminescence of Siloles that Contain Planar Fluorescent Chromophores. Chemistry - an Asian Journal, 2014, 9, 2937-2945.	1.7	23
185	A new blue AlEgen based on tetraphenylethene with multiple potential applications in fluorine ion sensors, mechanochromism, and organic light-emitting diodes. New Journal of Chemistry, 2018, 42, 4089-4094.	1.4	23
186	Cell-penetrating peptide modified AIE polymeric nanoparticles by miniemulsion polymerization and application for cell fluorescence imaging. Polymer Chemistry, 2019, 10, 4220-4228.	1.9	23
187	Assembly of 1 <i>H</i> -isoindole derivatives by selective carbon–nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chemical Science, 2019, 10, 7076-7081.	3.7	23
188	Highly efficient deep-blue fluorescent OLEDs based on anthracene derivatives with a triplet–triplet annihilation mechanism. Materials Chemistry Frontiers, 2021, 5, 6978-6986.	3.2	23
189	Efficient synthesis of high solid content emulsions of AIE polymeric nanoparticles with tunable brightness and surface functionalization through miniemulsion polymerization. Dyes and Pigments, 2019, 163, 371-380.	2.0	22
190	Efficient Skyâ€8lue Bipolar Delayed Fluorescence Luminogen for Highâ€Performance Single Emissive Layer WOLEDs. Advanced Optical Materials, 2021, 9, 2002019.	3.6	22
191	One-step fabrication of organic nanoparticles as scattering media for extracting substrate waveguide light from organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 13386.	6.7	21
192	Dimesitylboryl-functionalized fluorene derivatives: Promising luminophors with good electron-transporting ability for deep blue organic light-emitting diodes. Dyes and Pigments, 2014, 101, 136-141.	2.0	21
193	Aggregation-enhanced emission and through-space conjugation of tetraarylethanes and folded tetraarylethenes. Journal of Materials Chemistry C, 2016, 4, 9316-9324.	2.7	21
194	Controlling the thermally activated delayed fluorescence of axially chiral organic emitters and their racemate for information encryption. Chemical Science, 2021, 12, 15556-15562.	3.7	21
195	A green miniemulsion-based synthesis of polymeric aggregation-induced emission nanoparticles. Polymer Chemistry, 2015, 6, 6378-6385.	1.9	20
196	Efficient aggregation-induced delayed fluorescent materials based on bipolar carrier transport materials for the fabrication of high-performance nondoped OLEDs with very small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 9549-9557.	2.7	20
197	Anthracene-based bipolar deep-blue emitters for efficient white OLEDs with ultra-high stabilities of emission color and efficiency. Journal of Materials Chemistry C, 2021, 9, 5198-5205.	2.7	20
198	Luminescent tetraphenylethene-substituted silanes. Pure and Applied Chemistry, 2010, 82, 863-870.	0.9	19

#	Article	IF	CITATIONS
199	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie, 2021, 133, 23827-23832.	1.6	19
200	Creating efficient delayed fluorescence luminogens with acridine-based spiro donors to improve horizontal dipole orientation for high-performance OLEDs. Chemical Engineering Journal, 2022, 435, 134934.	6.6	19
201	1,3,6,8-Tetrakis[(triisopropylsilyl)ethynyl]pyrene: A highly efficient solid-state emitter for non-doped yellow electroluminescence devices. Organic Electronics, 2011, 12, 2236-2242.	1.4	18
202	A Facile Approach to Highly Efficient and Thermally Stable Solid‣tate Emitters: Knitting up AlEâ€Active TPE Luminogens by Aryl Linkers. ChemPlusChem, 2012, 77, 949-958.	1.3	18
203	Synthesis and photophysical properties of new through-space conjugated luminogens constructed by folded tetraphenylethene. Journal of Materials Chemistry C, 2017, 5, 12553-12560.	2.7	18
204	AlE-active 9,10-azaboraphenanthrene-containing viologens for reversible electrochromic and electrofluorochromic applications. Materials Chemistry Frontiers, 2021, 5, 4128-4137.	3.2	18
205	Twisted donor–acceptor molecules for efficient deep blue electroluminescence with CIE _y â°¼ 0.06. Journal of Materials Chemistry C, 2020, 8, 9401-9409.	2.7	18
206	A cell membrane-anchored nanoassembly with self-reporting property for enhanced second near-infrared photothermal therapy. Nano Today, 2021, 41, 101312.	6.2	18
207	Efficient Electroluminescence from Excimers of 1,3,6,8â€Tetrakis(3,5â€dimethylphenyl)pyrene. Chemistry - an Asian Journal, 2013, 8, 444-449.	1.7	17
208	Design and performance study of high efficiency/low efficiency roll-off/high CRI hybrid WOLEDs based on aggregation-induced emission materials as fluorescent emitters. Materials Chemistry Frontiers, 2019, 3, 2652-2658.	3.2	17
209	AEE-active conjugated polymers based on di(naphthalen-2-yl)-1,2-diphenylethene for sensitive fluorescence detection of picric acid. Dyes and Pigments, 2020, 174, 108041.	2.0	17
210	Insights into the correlation between the molecular conformational change and AIE activity of 2,5-bis(dimesitylboryl)-3,4-diphenylsiloles. Journal of Materials Chemistry C, 2016, 4, 7541-7545.	2.7	16
211	New carbazole-substituted siloles for the fabrication of efficient non-doped OLEDs. Chinese Chemical Letters, 2019, 30, 592-596.	4.8	16
212	Efficient Aggregation-Induced Delayed Fluorescence Luminogens for Solution-Processed OLEDs With Small Efficiency Roll-Off. Frontiers in Chemistry, 2020, 8, 193.	1.8	16
213	Highâ€Performance Hybrid White OLEDs with Ultraâ€Stable Emission Color and Small Efficiency Rollâ€Off Achieved by Incorporating a Deepâ€Blue Fluorescent Neat Film. Advanced Optical Materials, 2021, 9, 2100298.	3.6	16
214	Bottom-up modular synthesis of well-defined oligo(arylfuran)s. Nature Communications, 2021, 12, 6165.	5.8	16
215	Impacts of intramolecular B–N coordination on photoluminescence, electronic structure and electroluminescence of tetraphenylethene-based luminogens. Dyes and Pigments, 2014, 101, 247-253.	2.0	15
216	Bis(hexamethylazatriangulene)sulfone: a high-stability deep blue-violet fluorophore with 100% quantum yield and CIE _y < 0.07. Journal of Materials Chemistry C, 2020, 8, 5150-5155.	2.7	15

#	Article	IF	CITATIONS
217	Twisted Biphenylâ€Diimide Derivatives with Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence for High Performance OLEDs. Advanced Optical Materials, 2021, 9, 2001764.	3.6	15
218	Comparative study on the impact of through-space charge transfer over the electroluminescence performance of delayed fluorescence molecules. Journal of Materials Chemistry C, 2021, 9, 14808-14814.	2.7	15
219	Regulating Photophysical Property of Aggregationâ€Induced Delayed Fluorescence Luminogens via Heavy Atom Effect to Achieve Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	15
220	Multicomponent double Mannich alkylamination involving C(sp2)–H and benzylic C(sp3)–H bonds. Nature Communications, 2022, 13, 435.	5.8	14
221	Photostable and biocompatible AIE-active conjugated polyelectrolytes for efficient heparin detection and specific lysosome labelling. Journal of Materials Chemistry B, 2018, 6, 6360-6364.	2.9	13
222	Tetraphenylpyrazine-Based Luminogens with Aggregation-Enhanced Emission Characteristics: Preparation and Property. Chinese Journal of Organic Chemistry, 2016, 36, 1316.	0.6	13
223	A Siloleâ€Based Efficient Electroluminescent Material with Good Electronâ€Transporting Potential. Chinese Journal of Chemistry, 2015, 33, 842-846.	2.6	12
224	Photomechanical Luminescence from Through‧pace Conjugated AlEgens. Angewandte Chemie, 2020, 132, 8913-8917.	1.6	12
225	Highly cross-linked polymeric nanoparticles with aggregation-induced emission for sensitive and recyclable explosive detection. Dyes and Pigments, 2021, 191, 109369.	2.0	12
226	Achieving Multiple Quantum-Interfered States via Through-Space and Through-Bond Synergistic Effect in Foldamer-Based Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 8073-8083.	6.6	12
227	2,4â€Dicyanoâ€3â€diethylaminoâ€9,9â€diethylfluorene Based Blue Lightâ€emitting Starâ€shaped Compounds: Synthesis and Properties. Chinese Journal of Chemistry, 2009, 27, 971-977.	2.6	11
228	Synthesis, aggregation-induced emission and electroluminescence properties of three new phenylethylene derivatives comprising carbazole and (dimesitylboranyl)phenyl groups. Journal of Materials Chemistry C, 2017, 5, 11741-11750.	2.7	11
229	Tetraphenylethene-based polymeric fluorescent probes for 2,4,6-trinitrophenol detection and specific lysosome labelling. Dyes and Pigments, 2020, 182, 108588.	2.0	11
230	Synthesis, aggregation-induced emission and electroluminescence of new luminogens based on thieno[3,2-b]thiophene S,S-dioxide. Dyes and Pigments, 2018, 159, 275-282.	2.0	10
231	Tetraphenylpyrazine decorated 1,3-di(9 <i>H</i> -carbazol-9-yl)benzene (mCP): a new AIE-active host with enhanced performance in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 11160-11166.	2.7	10
232	Tumorâ€Triggered Disassembly of a Multipleâ€Agentâ€Therapy Probe for Efficient Cellular Internalization. Angewandte Chemie, 2020, 132, 20585-20590.	1.6	10
233	A Bipolar Delayed Fluorescence Luminogen with Fast Reverse Intersystem Crossing and High Horizontal Dipole Orientation for Highâ€Performance Skyâ€Blue and White OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	10
234	Bis(trimethylsilyl)phenyl-bridged D-A molecules: Synthesis, spectroscopic properties and for achieving deep-blue emitting materials. Dyes and Pigments, 2020, 174, 108063.	2.0	9

#	Article	IF	CITATIONS
235	Circularly Polarized Luminescence of Achiral Metal–Organic Colloids and Guest Molecules in a Vortex Field. Chemistry - A European Journal, 2021, 27, 6760-6766.	1.7	9
236	Giant single-molecule conductance enhancement achieved by strengthening through-space conjugation with thienyls. Cell Reports Physical Science, 2021, 2, 100364.	2.8	9
237	Construction of magnetic-fluorescent bifunctional nanoparticles via miniemulsion polymerization for cell imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126062.	2.3	9
238	Conformation-dependent mechanochromic delayed fluorescence of AIE-active tetra-coordinated B–N complexes. Dyes and Pigments, 2021, 196, 109776.	2.0	9
239	Sky-blue delayed fluorescence molecules based on pyridine-substituted acridone for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 15505-15510.	2.7	9
240	Precisely Detecting the Telomerase Activities by an AlEgen Probe with Dual Signal Outputs after Cell-Cycle Synchronization. Analytical Chemistry, 2022, 94, 4874-4880.	3.2	9
241	An efficient aggregationâ€enhanced delayed fluorescence luminogen created with spiro donors and carbonyl acceptor for applications as an emitter and sensitizer in highâ€performance organic lightâ€emitting diodes. Aggregate, 2023, 4, .	5.2	9
242	Theoretical study of substituent effect on the charge mobility of 2,5-bis(trialkylsilylethynyl)-1,1,3,4-tetraphenylsiloles. Science China Chemistry, 2010, 53, 2311-2317.	4.2	8
243	Aggregation-induced emission based on a fluorinated macrocycle: visualizing spontaneous and ultrafast solid-state molecular motions at room temperature via F⋯F interactions. Journal of Materials Chemistry C, 2020, 8, 14919-14924.	2.7	8
244	Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D–A Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 29528-29539.	4.0	8
245	Nitrogen-Rich Tetraphenylethene-Based Luminescent Metal–Organic Framework for Efficient Detection of Carcinogens. ACS Omega, 2021, 6, 2177-2183.	1.6	8
246	Iodization-enhanced fluorescence and circularly polarized luminescence for dual-readout probe design. Sensors and Actuators B: Chemical, 2021, 347, 130610.	4.0	8
247	Synthesis of Uniform Polymer Encapsulated Organic Nanocrystals through Ouzo Nanocrystallization. Small Methods, 2022, 6, e2100808.	4.6	8
248	Aggregation-induced delayed fluorescence molecules with mechanochromic behaviors for efficient blue organic light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100733.	2.8	8
249	Highlights from Faraday Discussion: aggregation-induced emission. Chemical Communications, 2017, 53, 3158-3164.	2.2	7
250	Biphenyl Diimide Based Novel Blue Emitters with Aggregationâ€Induced Blueâ€Shifted Emission Characteristics. ChemPhotoChem, 2020, 4, 59-67.	1.5	7
251	Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS Nano, 2022, 16, 6176-6184.	7.3	7
252	Synthesis, structure, photoluminescence and photochromism of phosphindole oxide and benzo[b]thiophene S,S-dioxide derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 274-282.	2.0	6

#	Article	lF	CITATIONS
253	An organic microlaser based on an aggregation-induced emission fluorophore for tensile strain sensing. Journal of Materials Chemistry C, 2021, 9, 4888-4894.	2.7	6
254	Excellent quantum yield enhancement in luminescent metal-organic layer for sensitive detection of antibiotics in aqueous medium. Dyes and Pigments, 2022, 198, 109961.	2.0	6
255	Robust Luminescent Molecules with Highâ€Level Reverse Intersystem Crossing for Efficient Near Ultraviolet Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	1.6	6
256	New aggregation-induced delayed fluorescent materials for efficient OLEDs with high stabilities of emission color and efficiency. Materials Chemistry Frontiers, 2022, 6, 924-932.	3.2	6
257	Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter, 2022, 5, 1224-1234.	5.0	6
258	Large effects of tiny structural changes on the AIE-TADF type xanthone derivatives in mechano-responsive luminescence and electroluminescence. Dyes and Pigments, 2022, 205, 110550.	2.0	6
259	Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence. Frontiers of Optoelectronics, 2015, 8, 274-281.	1.9	5
260	A waterâ€soluble, AlEâ€active polyelectrolyte for conventional and fluorescence lifetime imaging of mouse neuroblastoma neuroâ€2A cells. Journal of Polymer Science Part A, 2018, 56, 672-680.	2.5	5
261	Achieving Efficient Multichannel Conductance in Throughâ€Space Conjugated Singleâ€Molecule Parallel Circuits. Angewandte Chemie, 2020, 132, 4611-4618.	1.6	5
262	A biological luminescent metal–organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides. Dalton Transactions, 2022, 51, 2883-2889.	1.6	5
263	Development and application of Diels-Alder adducts displaying AIE properties. Cell Reports Physical Science, 2022, 3, 100766.	2.8	5
264	9,9-Dimethyl-9,10-dihydroacridine functionalized phosphoindole oxides with AIE property for OLED application. Journal of Information Display, 2020, 21, 139-147.	2.1	4
265	Deciphering Benzene–Heterocycle Stacking Interaction Impact on the Electronic Structures and Photophysical Properties of Tetraphenylethene-Cored Foldamers. CCS Chemistry, 2022, 4, 286-303.	4.6	4
266	Novel aggregation-induced delayed fluorescence luminogens for vacuum-deposited and solution-processed OLEDs with very small efficiency roll-offs. Organic Electronics, 2021, 99, 106339.	1.4	4
267	Circularly polarized luminescent 4, 4′-bicarbazole scaffold for facile construction of chiroptical probes. Dyes and Pigments, 2022, 198, 109969.	2.0	4
268	Novel Germoles and Their Ladder-Type Derivatives: Modular Synthesis, Luminescence Tuning, and Electroluminescence. CCS Chemistry, 2022, 4, 3798-3808.	4.6	4
269	P-165: Efficient RGBW OLEDs Based on 4, 4'-Bis (1, 2, 2-triphenylvinyl) biphenyl. Digest of Technical Papers SID International Symposium, 2010, 41, 1867.	0.1	3
270	Oneâ€Pot Condensation of 2―and 2,5â€Halo‣ubstituted Benzophenones for the Synthesis of Halo‣ubstituted 9,10â€Ðiphenylanthracenes. Asian Journal of Organic Chemistry, 2012, 1, 331-335.	1.3	3

#	Article	IF	CITATIONS
271	Luminogens: Efficient Bipolar Blue AlEgens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs (Adv. Funct. Mater. 40/2018). Advanced Functional Materials, 2018, 28, 1870288.	7.8	3
272	Tetraphenylethene-Based Luminescent Metal–Organic Framework for Effective Differentiation of <i>cis/trans</i> Isomers. ACS Applied Materials & Interfaces, 2020, 12, 35266-35272.	4.0	3
273	Adjusting and visualizing the stability of an acyl chloride through the delocalization effect and introducing AlEgens. Chemical Communications, 2022, 58, 5769-5772.	2.2	3
274	Robust tetrakisarylsilyl substituted spirobifluorene: Synthesis and application as universal host for blue to red electrophosphorescence. Dyes and Pigments, 2021, 194, 109550.	2.0	2
275	Delocalized Excitation or Intramolecular Energy Transfer in Pyrene Core Dendrimers. Journal of Physical Chemistry Letters, 2021, 12, 7717-7725.	2.1	1
276	White light emission from InGaN/organic molecule light-emitting diode. , 2013, , .		0
277	Synthesis of Uniform Polymer Encapsulated Organic Nanocrystals through Ouzo Nanocrystallization (Small Methods 1/2022). Small Methods, 2022, 6, .	4.6	0
278	Aggregation-induced delayed fluorescence. , 2022, , 91-115.		0