
F Stephen Dobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour, 1982, 30, 1183-1192.	1.9	769
2	Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.	6.4	317
3	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	12.8	285
4	Population genetics meets behavioral ecology. Trends in Ecology and Evolution, 1996, 11, 338-342.	8.7	282
5	Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature, 2012, 489, 554-557.	27.8	248
6	Multiple Causes of Dispersal. American Naturalist, 1985, 126, 855-858.	2.1	232
7	The Relative Importance of Lifeâ€History Variables to Population Growth Rate in Mammals: Cole's Prediction Revisited. American Naturalist, 2003, 161, 422-440.	2.1	211
8	An Experimental Study of Dispersal in the California Ground Squirrel. Ecology, 1979, 60, 1103.	3.2	152
9	How Life History Influences Population Dynamics in Fluctuating Environments. American Naturalist, 2013, 182, 743-759.	2.1	152
10	Maternal Traits and Reproduction in Richardson's Ground Squirrels. Ecology, 1995, 76, 851-862.	3.2	126
11	Interpretation of Intraspecific Life History Patterns: Evidence from Columbian Ground Squirrels. American Naturalist, 1987, 129, 382-397.	2.1	108
12	Body Mass, Structural Size, and Life-History Patterns of the Columbian Ground Squirrel. American Naturalist, 1992, 140, 109-125.	2.1	98
13	Seven forms of rarity in mammals. Journal of Biogeography, 2000, 27, 131-139.	3.0	97
14	Increasing returns in the life history of Columbian ground squirrels. Journal of Animal Ecology, 1999, 68, 73-86.	2.8	92
15	The influence of food resources on life history in Columbian ground squirrels. Canadian Journal of Zoology, 1985, 63, 2105-2109.	1.0	91
16	The Demographic Basis of Population Regulation in Columbian Ground Squirrels. American Naturalist, 2001, 158, 236-247.	2.1	90
17	Social and ecological influences on dispersal and philopatry in the plateau pika (Ochotona) Tj ETQq1 1 0.7843	14 rgBT /Ov	verlock 10 Tf
18	The influence of food resources on population dynamics in Columbian ground squirrels. Canadian Journal of Zoology, 1985, 63, 2095-2104.	1.0	83

#	Article	IF	CITATIONS
19	You Can't Judge a Pigment by its Color: Carotenoid and Melanin Content of Yellow and Brown Feathers in Swallows, Bluebirds, Penguins, and Domestic Chickens. Condor, 2004, 106, 390-395.	1.6	83
20	Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology, 1999, 77, 802-813.	1.0	81
21	Mechanisms of the group-size effect on vigilance in Columbian ground squirrels: dilution versus detection. Animal Behaviour, 2007, 73, 115-123.	1.9	81
22	YOU CAN'T JUDGE A PIGMENT BY ITS COLOR: CAROTENOID AND MELANIN CONTENT OF YELLOW AND BROWN FEATHERS IN SWALLOWS, BLUEBIRDS, PENGUINS, AND DOMESTIC CHICKENS. Condor, 2004, 106, 390.	1.6	79
23	EFFECT OF DENSITY REDUCTION ON UINTA GROUND SQUIRRELS: ANALYSIS OF LIFE TABLE RESPONSE EXPERIMENTS. Ecology, 2001, 82, 1921-1929.	3.2	76
24	Fast and slow life histories of mammals. Ecoscience, 2007, 14, 292.	1.4	76
25	Reproductive Value and the Stochastic Demography of Ageâ€Structured Populations. American Naturalist, 2009, 174, 795-804.	2.1	72
26	Fluctuating optimum and temporally variable selection on breeding date in birds and mammals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31969-31978.	7.1	69
27	Population Cycles in Small Mammals: The Role of Age at Sexual Maturity. Oikos, 1999, 86, 557.	2.7	68
28	The enduring question of sex-biased dispersal: Paul J. Greenwood's (1980) seminal contribution. Animal Behaviour, 2013, 85, 299-304.	1.9	65
29	DO BLACKâ€TAILED PRAIRIE DOCS MINIMIZE INBREEDING?. Evolution; International Journal of Organic Evolution, 1997, 51, 970-978.	2.3	64
30	Ornamental plumage coloration and condition are dependent on age in eastern bluebirdsSialia sialis. Journal of Avian Biology, 2005, 36, 428-435.	1.2	62
31	Why breed every other year? The case of albatrosses. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1955-1961.	2.6	61
32	Spatial dynamics and the evolution of social monogamy in mammals. Behavioral Ecology, 2010, 21, 747-752.	2.2	60
33	Breeding Groups and Gene Dynamics in a Socially Structured Population of Prairie Dogs. Journal of Mammalogy, 1998, 79, 671.	1.3	58
34	Maternal influences on reproduction in two populations of Columbian ground squirrels. Ecological Monographs, 2009, 79, 325-341.	5.4	56
35	Mating order and reproductive success in male Columbian ground squirrels (Urocitellus) Tj ETQq1 1 0.784314 rg	gBT_/Overl	ock 10 Tf 50
36	The effects of capital on an income breeder: evidence from female Columbian ground squirrels. Canadian Journal of Zoology, 2005, 83, 546-552.	1.0	52

#	Article	IF	CITATIONS
37	Seasonal activity and body mass of Columbian ground squirrels. Canadian Journal of Zoology, 1992, 70, 1364-1368.	1.0	51
38	Rarity in Neotropical Forest Mammals Revisited. Conservation Biology, 1993, 7, 586-591.	4.7	44
39	Is Mean Litter Size the Most Productive? A Test in Columbian Ground Squirrels. Ecology, 1995, 76, 1643-1654.	3.2	42
40	A lifestyle view of life-history evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17565-17566.	7.1	42
41	An experimental test of kin association in the house mouse. Canadian Journal of Zoology, 2000, 78, 1806-1812.	1.0	41
42	Kin selection in Columbian ground squirrels (<i>Urocitellus columbianus</i>): littermate kin provide individual fitness benefits. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 989-994.	2.6	40
43	THE USE OF PHYLOGENY IN BEHAVIOR AND ECOLOGY. Evolution; International Journal of Organic Evolution, 1985, 39, 1384-1388.	2.3	38
44	Male-female associations and female olfactory neurogenesis with pair bonding in Mus spicilegus. Biological Journal of the Linnean Society, 0, 84, 323-334.	1.6	38
45	Threats to Avifauna on Oceanic Islands. Conservation Biology, 2007, 21, 125-132.	4.7	38
46	Mutual Mate Choice for Colorful Traits in King Penguins. Ethology, 2010, 116, 635-644.	1.1	38
47	Do Black-Tailed Prairie Dogs Minimize Inbreeding?. Evolution; International Journal of Organic Evolution, 1997, 51, 970.	2.3	35
48	POPULATION CYCLES IN SMALL MAMMALS: THE α-HYPOTHESIS. Journal of Mammalogy, 2001, 82, 573-581.	1.3	34
49	Why do male Columbian ground squirrels give a mating call?. Animal Behaviour, 2007, 74, 1319-1327.	1.9	34
50	Regulation of population size: evidence from Columbian ground squirrels. Oecologia, 1995, 102, 44-51.	2.0	33
51	Availability of nest sites does not limit population size of southern flying squirrels. Canadian Journal of Zoology, 2000, 78, 1144-1149.	1.0	33
52	Experimental tests of spatial association and kinship in monogamous mice (Mus spicilegus) and polygynous mice (Mus musculus domesticus). Canadian Journal of Zoology, 2002, 80, 980-986.	1.0	33
53	Ultraviolet Beak Spots in King and Emperor Penguins. Condor, 2005, 107, 144-150.	1.6	33
54	VARIATION IN LITTER SIZE: A TEST OF HYPOTHESES IN RICHARDSON'S GROUND SQUIRRELS. Ecology, 2007, 88, 306-314.	3.2	33

#	Article	IF	CITATIONS
55	Previous Experience and Reproductive Investment of Female Columbian Ground Squirrels. Journal of Mammalogy, 2008, 89, 145-152.	1.3	33
56	Measures of gene flow in the Columbian ground squirrel. Oecologia, 1994, 100-100, 190-195.	2.0	32
57	ULTRAVIOLET BEAK SPOTS IN KING AND EMPEROR PENGUINS. Condor, 2005, 107, 144.	1.6	31
58	How slow breeding can be selected in seabirds: testing Lack's hypothesis. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 275-279.	2.6	31
59	Environmental Influences on Infanticide in Columbian Ground Squirrels. Ethology, 1990, 84, 3-14.	1.1	31
60	Comparison of Color and Body Condition Between Early and Late Breeding King Penguins. Ethology, 2008, 114, 925-933.	1.1	30
61	Kin selection in Columbian ground squirrels: direct and indirect fitness benefits. Molecular Ecology, 2012, 21, 524-531.	3.9	30
62	Plasticity results in delayed breeding in a longâ€distant migrant seabird. Ecology and Evolution, 2017, 7, 3100-3109.	1.9	30
63	Agonism and Territoriality in the California Ground Squirrel. Journal of Mammalogy, 1983, 64, 218-225.	1.3	29
64	Environmental influences on the sexual dimorphism in body size of western bobcats. Oecologia, 1996, 108, 610-616.	2.0	29
65	How mothers find their pups in a colony of Antarctic fur seals. Behavioural Processes, 2003, 61, 77-85.	1.1	29
66	Experiments on colour ornaments and mate choice in king penguins. Animal Behaviour, 2009, 78, 1247-1253.	1.9	28
67	Philopatry and withinâ€colony movements in Columbian ground squirrels. Molecular Ecology, 2012, 21, 493-504.	3.9	28
68	The trade-off of reproduction and survival in slow-breeding seabirds. Canadian Journal of Zoology, 2010, 88, 889-899.	1.0	26
69	A phylogenetic framework for the evolution of female polymorphism in anoles. Biological Journal of the Linnean Society, 2011, 104, 303-317.	1.6	26
70	The Use of Phylogeny in Behavior and Ecology. Evolution; International Journal of Organic Evolution, 1985, 39, 1384.	2.3	25
71	The Influence of Social Breeding Groups on Effective Population Size in Black-tailed Prairie Dogs. Journal of Mammalogy, 2004, 85, 58-66.	1.3	25
72	Why are Male Columbian Ground Squirrels Territorial?. Ethology, 2008, 114, 1049-1060.	1.1	25

#	Article	IF	CITATIONS
73	Estimating the effect of temporally autocorrelated environments on the demography of densityâ€independent ageâ€structured populations. Methods in Ecology and Evolution, 2013, 4, 573-584.	5.2	24
74	Coloured patches influence pairing rate in King Penguins. Ibis, 2008, 150, 193-196.	1.9	23
75	Male reproductive tactics to increase paternity in the polygynandrous Columbian ground squirrel (Urocitellus columbianus). Behavioral Ecology and Sociobiology, 2011, 65, 695-706.	1.4	23
76	The biogeography of Gentoo Penguins (PygoscelisÂpapua). Canadian Journal of Zoology, 2012, 90, 352-360.	1.0	23
77	Canalization of phenology in common terns: genetic and phenotypic variations in spring arrival date. Behavioral Ecology, 2013, 24, 683-690.	2.2	23
78	The Importance of Evaluating Rarity. Conservation Biology, 1995, 9, 1648-1651.	4.7	22
79	Mutually honest? Physiological â€~qualities' signalled byÂcolour ornaments in monomorphic king penguins. Biological Journal of the Linnean Society, 2016, 118, 200-214.	1.6	22
80	ORIGINAL ARTICLE: The biogeography of avian extinctions on oceanic islands. Journal of Biogeography, 2008, 35, 1106-1111.	3.0	21
81	A natural "Benchmark" for Ecosystem Function. Conservation Biology, 1997, 11, 300-307.	4.7	20
82	Ectoparasites and fitness of female Columbian ground squirrels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140113.	4.0	18
83	Social Group Fission and Gene Dynamics among Black-Tailed Prairie Dogs (Cynomys ludovicianus). Journal of Mammalogy, 2007, 88, 448-456.	1.3	17
84	Maternal oxidative stress and reproduction: Testing the constraint, cost and shielding hypotheses in a wild mammal. Functional Ecology, 2018, 32, 722-735.	3.6	17
85	Multiple paternity and number of offspring in mammals. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182042.	2.6	17
86	No experimental effects of parasite load on male mating behaviour and reproductive success. Animal Behaviour, 2011, 82, 673-682.	1.9	15
87	Fitness implications of seasonal climate variation in Columbian ground squirrels. Ecology and Evolution, 2016, 6, 5614-5622.	1.9	15
88	Sexual Selection on a Coloured Ornament in King Penguins. Ethology, 2011, 117, 872-879.	1.1	14
89	Lifestyles and phylogeny explain bird life histories. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10747-10748.	7.1	14
90	Testing the reproductive and somatic tradeâ€off in female Columbian ground squirrels. Ecology and Evolution, 2016, 6, 7586-7595.	1.9	14

#	Article	IF	CITATIONS
91	Fitness Estimation for Ecological Studies: An Evaluation in Columbian Ground Squirrels. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
92	Growth and Size in Meadow Voles (Microtus pennsylvanicus). American Midland Naturalist, 1992, 128, 180.	0.4	13
93	Integrating Mortality Risk and the Adaptiveness of Hibernation. Frontiers in Physiology, 2020, 11, 706.	2.8	13
94	Fast and slow life histories of carnivores. Canadian Journal of Zoology, 2011, 89, 692-704.	1.0	12
95	UV signals in penguins. Polar Biology, 2009, 32, 513-514.	1.2	11
96	Aggression in Columbian ground squirrels: relationships with age, kinship, energy allocation, and fitness. Behavioral Ecology, 0, , arw098.	2.2	11
97	Testing models of biological scaling with mammalian population densities. Canadian Journal of Zoology, 2003, 81, 844-851.	1.0	10
98	Use of the Nest Site as a Rendezvous in Penguins. Waterbirds, 2003, 26, 409.	0.3	10
99	The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: A metaâ€analysis. Ecology and Evolution, 2021, 11, 12908-12922.	1.9	10
100	Homosexual Mating Displays in Penguins. Ethology, 2010, 116, 1210-1216.	1.1	9
101	Variation in reproductive success of male and female Columbian ground squirrels (<i>UrocitellusÂcolumbianus</i>). Canadian Journal of Zoology, 2012, 90, 736-743.	1.0	9
102	Maleâ€Biased Mate Competition in King Penguin Trio Parades. Ethology, 2013, 119, 389-396.	1.1	9
103	Mate Choice and Colored Beak Spots of King Penguins. Ethology, 2015, 121, 1048-1058.	1.1	9
104	Assortative pairing by telomere length in King Penguins (<i>Aptenodytes patagonicus</i>) and relationships with breeding success. Canadian Journal of Zoology, 2018, 96, 639-647.	1.0	9
105	Survival of Alternative Dorsal-Pattern Morphs in Females of the Anole Norops humilis. Herpetologica, 2011, 67, 420-427.	0.4	8
106	Color ornaments and territory position in king penguins. Behavioural Processes, 2015, 119, 32-37.	1.1	8
107	Experimental stress during molt suggests the evolution of conditionâ€dependent and conditionâ€independent ornaments in the king penguin. Ecology and Evolution, 2018, 8, 1084-1095.	1.9	8
108	Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Hormones and Behavior, 2022, 145, 105232.	2.1	8

#	Article	IF	CITATIONS
109	Social Subdivision Influences Effective Population Size in the Colonial-Breeding Black-Tailed Prairie Dog. Journal of Mammalogy, 2009, 90, 380-387.	1.3	7
110	Variation of mutual colour ornaments of king penguins in response to winter resource availability. Behaviour, 2015, 152, 1679-1700.	0.8	7
111	Kin effects on energy allocation in groupâ€living ground squirrels. Journal of Animal Ecology, 2016, 85, 1361-1369.	2.8	7
112	Alternative reproductive tactics and lifetime reproductive success in a polygynandrous mammal. Behavioral Ecology, 2019, 30, 474-482.	2.2	7
113	Comparing fitness measures and the influence of age of first reproduction in Columbian ground squirrels. Journal of Mammalogy, 2020, 101, 1302-1312.	1.3	6
114	Premating behavioral tactics of Columbian ground squirrels. Journal of Mammalogy, 2011, 92, 861-870.	1.3	5
115	Development and evaluation of a migration timing forecast model for Kuskokwim River Chinook salmon. Fisheries Research, 2017, 194, 9-21.	1.7	5
116	Microhabitat use by plateau pikas: living on the edge. Journal of Mammalogy, 2019, 100, 1221-1228.	1.3	5
117	The role of microhabitat in predation on females with alternative dorsal patterns in a small Costa Rican anole (Squamata: Dactyloidae). Revista De Biologia Tropical, 2013, 61, 887-95.	0.4	5
118	Social complexity in plateau pikas, Ochotona curzoniae. Animal Behaviour, 2022, 184, 27-41.	1.9	5
119	Integrating microclimatic variation in phenological responses to climate change: A 28â€year study in a hibernating mammal. Ecosphere, 2022, 13, .	2.2	5
120	Measuring fitness and inferring natural selection from long-term field studies: different measures lead to nuanced conclusions. Behavioral Ecology and Sociobiology, 2022, 76, .	1.4	5
121	Telomere dynamics in female Columbian ground squirrels: recovery after emergence and loss after reproduction. Oecologia, 2022, 199, 301-312.	2.0	5
122	Beak color dynamically signals changes in fasting status and parasite loads in king penguins. Behavioral Ecology, 2016, , arw091.	2.2	4
123	Social stress in female Columbian ground squirrels: density-independent effects of kin contribute to variation in fecal glucocorticoid metabolites. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	4
124	Multiple paternity and the number of offspring: A model reveals two major groups of species. BioEssays, 2021, 43, e2000247.	2.5	4
125	Demographic responses to climate change in a threatened Arctic species. Ecology and Evolution, 2021, 11, 10627-10643.	1.9	4
126	Does feeding zone influence egg size in slow-breeding seabirds?. Canadian Journal of Zoology, 2015, 93, 589-592.	1.0	3

#	Article	IF	CITATIONS
127	Testing Williams' prediction: reproductive effort versus residual reproductive value (RRV). Canadian Journal of Zoology, 2010, 88, 900-904.	1.0	2
128	Estimating a Key Parameter of Mammalian Mating Systems: The Chance of Siring Success for a Mated Male. BioEssays, 2019, 41, 1900016.	2.5	2
129	Subtle short-term physiological costs of an experimental augmentation of fleas in wild Columbian ground squirrels. Journal of Experimental Biology, 2019, 222, .	1.7	2
130	Parental investment in the Columbian ground squirrel: empirical tests of sex allocation models. Ecology, 2021, 102, e03479.	3.2	2
131	Territorial scent-marking effects on vigilance behavior, space use, and stress in female Columbian ground squirrels. Hormones and Behavior, 2022, 139, 105111.	2.1	2
132	Importance of Causal Analysis of Threats to Oceanic Avifaunas: Reply to Blackburn et al Conservation Biology, 2008, 22, 495-497.	4.7	1
133	Testing causal structure in the biogeography of avian extinctions on oceanic islands. Journal of Biogeography, 2009, 36, 1614-1617.	3.0	1
134	Demography of squirrel monkeys (<i>Saimiri sciureus</i>) in captive environments and its effect on population growth. American Journal of Primatology, 2011, 73, 1041-1050.	1.7	1
135	Live fast, die young, and win the sperm competition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17610-17611.	7.1	1
136	Is It a Boy or a Cirl? Testing Hypotheses to Explain Variable Sex Ratios in Columbian Ground Squirrels. Bulletin of the Ecological Society of America, 2021, 102, .	0.2	0
137	Fitness. , 2018, , 1-7.		0

138 Fitness. , 2022, , 2739-2745.

0