Suad Jakirlić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/268985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review E, 2009, 79, 036306.	0.8	443
2	A new approach to modelling near-wall turbulence energy and stress dissipation. Journal of Fluid Mechanics, 2002, 459, 139-166.	1.4	147
3	Contribution towards the second-moment closure modelling of separating turbulent flows. Computers and Fluids, 1998, 27, 137-156.	1.3	108
4	Toward a Universal Roughness Correlation. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	0.8	86
5	Experimental and computational study of the flow induced by a plasma actuator. International Journal of Heat and Fluid Flow, 2013, 41, 80-89.	1.1	75
6	Extending the bounds of â€~steady' RANS closures: Toward an instability-sensitive Reynolds stress model. International Journal of Heat and Fluid Flow, 2015, 51, 175-194.	1.1	72
7	Inertia dominated flow and heat transfer in liquid drop spreading on a hot substrate. International Journal of Heat and Fluid Flow, 2011, 32, 785-795.	1.1	40
8	Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. International Journal of Heat and Fluid Flow, 2010, 31, 820-832.	1.1	39
9	Insights into the periodic gust responseÂofÂairfoils. Journal of Fluid Mechanics, 2019, 876, 237-263.	1.4	38
10	A new hybrid turbulence modelling strategy for industrial CFD. International Journal for Numerical Methods in Fluids, 2003, 42, 89-116.	0.9	36
11	A Periodically Perturbed Backward-Facing Step Flow by Means of LES, DES and T-RANS: An Example of Flow Separation Control. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 879-887.	0.8	31
12	Computational analysis of locally forced flow over a wall-mounted hump at high-Re number. International Journal of Heat and Fluid Flow, 2006, 27, 707-720.	1.1	31
13	Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor. International Journal of Heat and Fluid Flow, 2006, 27, 924-936.	1.1	30
14	Near-wall, Reynolds-stress model calculations of transonic flow configurations relevant to aircraft aerodynamics. International Journal of Heat and Fluid Flow, 2007, 28, 602-615.	1.1	28
15	Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water. Computers and Fluids, 2013, 79, 44-52.	1.3	27
16	Computational modelling of flow and conjugate heat transfer of a drop impacting onto a cold wall. International Journal of Heat and Mass Transfer, 2017, 109, 971-980.	2.5	27
17	Experimental characterization of the velocity boundary layer in a motored IC engine. International Journal of Heat and Fluid Flow, 2018, 71, 366-377.	1.1	27
18	Progress in the second-moment closure for bubbly flow based on direct numerical simulation data. Journal of Fluid Mechanics, 2020, 883, .	1.4	23

Suad Jakirlić

#	Article	IF	CITATIONS
19	Quenching of Premixed Flames at Cold Walls: Effects on the Local Flow Field. Flow, Turbulence and Combustion, 2018, 100, 177-196.	1.4	22
20	Crystallization of supercooled water: A level-set-based modeling of the dendrite tip velocity. International Journal of Heat and Mass Transfer, 2013, 66, 830-837.	2.5	21
21	On unified boundary conditions for improved predictions of near-wall turbulence. Journal of Fluid Mechanics, 2010, 656, 530-539.	1.4	15
22	Swirling flow in a tube with variably-shaped outlet orifices: An LES and VLES study. International Journal of Heat and Fluid Flow, 2014, 49, 28-42.	1.1	15
23	Eddy-resolving Simulations of the Notchback †DrivAer' Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour. , 0, , .		14
24	Shearless and sheared flow past a circular cylinder: Comparative analysis by means of LES. International Journal of Heat and Fluid Flow, 2008, 29, 703-720.	1.1	13
25	Comparison of wall shear stress estimates obtained by laser Doppler velocimetry, magnetic resonance imaging and numerical simulations. Experiments in Fluids, 2019, 60, 1.	1.1	12
26	Analysis of the wall shear stress in a generic aneurysm under pulsating and transitional flow conditions. Experiments in Fluids, 2020, 61, 1.	1.1	12
27	DNS, experimental and modelling study of axially compressed in-cylinder swirling flow. International Journal of Heat and Fluid Flow, 2000, 21, 627-639.	1.1	11
28	Experimental and Computational Investigations of Flow and Mixing in a Single-Annular Combustor Configuration. Flow, Turbulence and Combustion, 2009, 83, 425-448.	1.4	11
29	Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 10, 235-250.	0.4	11
30	Comparative study of Euler/Euler and Euler/Lagrange approaches simulating evaporation in a turbulent gas–liquid flow. International Journal for Numerical Methods in Fluids, 2009, 59, 873-906.	0.9	10
31	VLES study of a jet impinging onto a heated wall. International Journal of Heat and Fluid Flow, 2017, 68, 290-297.	1.1	8
32	On Interface Issues in LES/RANS Coupling Strategies: A Method for Turbulence Forcing. Journal of Fluid Science and Technology, 2011, 6, 56-72.	0.2	7
33	Reynolds stress modelling of wake interference of two cylinders in tandem: Conventional vs. eddy-resolving closure. International Journal of Heat and Fluid Flow, 2017, 67, 139-148.	1.1	7
34	Flow and heat transfer in cross-stream type T-junctions: A computational study. International Journal of Heat and Fluid Flow, 2018, 71, 179-188.	1.1	7
35	High performance computing of the Darmstadt stratified burner by means of large eddy simulation and a joint ATF-FGM approach. Computing and Visualization in Science, 2013, 16, 77-88.	1.2	6
36	Computational modeling of freezing of supercooled water using phase-field front propagation with immersed points. International Journal of Multiphase Flow, 2018, 99, 329-346.	1.6	6

Suad Jakirlić

#	Article	IF	CITATIONS
37	VLES Modeling of Flow Over Walls with Variably-shaped Roughness by Reference to Complementary DNS. Flow, Turbulence and Combustion, 2017, 99, 685-703.	1.4	3
38	Performance Assessment of Some Popular RANS Models by Relevance to High-Lift Aerodynamics. , 2009, , .		2
39	Critical evaluation of some popular hybrid LES/RANS methods by reference to flow separation at a curved wall. , 2011, , .		2
40	A tandem approach for collocated measurements of microphysical and radiative cirrus properties. Atmospheric Measurement Techniques, 2017, 10, 3485-3498.	1.2	2