
Savas Delikani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2688573/publications.pdf Version: 2024-02-01

SAVAS DELIKANI

#	Article	IF	CITATIONS
1	Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano, 2014, 8, 6599-6605.	14.6	288
2	Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 5041-5050.	14.6	154
3	Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets. Journal of Physical Chemistry C, 2015, 119, 26768-26775.	3.1	146
4	Nearâ€Unity Emitting Copperâ€Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators. Advanced Materials, 2017, 29, 1700821.	21.0	133
5	Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets. Journal of Physical Chemistry C, 2015, 119, 2177-2185.	3.1	70
6	Mn ²⁺ -Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier–Dopant Exchange Interactions. ACS Nano, 2015, 9, 12473-12479.	14.6	63
7	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	16.0	62
8	Room temperature ferromagnetism in Mn-doped CdS nanorods. Applied Physics Letters, 2008, 93, .	3.3	61
9	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	14.9	56
10	Continuously Tunable Emission in Inverted Typeâ€I CdS/CdSe Core/Crown Semiconductor Nanoplatelets. Advanced Functional Materials, 2015, 25, 4282-4289.	14.9	52
11	Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions. Chemistry of Materials, 2018, 30, 3265-3275.	6.7	51
12	Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd _{1â^'x} Zn _x S colloidal core/crown@alloyed-shell quantum wells. Nanoscale, 2019, 11, 301-310.	5.6	44
13	Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale, 2018, 10, 9466-9475.	5.6	43
14	Electrically control amplified spontaneous emission in colloidal quantum dots. Science Advances, 2019, 5, eaav3140.	10.3	43
15	Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE, 2020, 108, 655-675.	21.3	39
16	Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nature Communications, 2020, 11, 3305.	12.8	39
17	sp–d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets. Nano Letters, 2018, 18, 2047-2053.	9.1	32
18	Coreless Fiberâ€Based Whisperingâ€Galleryâ€Mode Assisted Lasing from Colloidal Quantum Well Solids. Advanced Functional Materials, 2020, 30, 1907417.	14.9	31

SAVAS DELIKANI

#	Article	IF	CITATIONS
19	Carrier-dopant exchange interactions in Mn-doped PbS colloidal quantum dots. Applied Physics Letters, 2012, 101, 062410.	3.3	28
20	All-optical control of exciton flow in a colloidal quantum well complex. Light: Science and Applications, 2020, 9, 27.	16.6	21
21	Magneto-Optics of Excitons Interacting with Magnetic Ions in CdSe/CdMnS Colloidal Nanoplatelets. ACS Nano, 2020, 14, 9032-9041.	14.6	20
22	Ultrahigh Green and Red Optical Gain Cross Sections from Solutions of Colloidal Quantum Well Heterostructures. Journal of Physical Chemistry Letters, 2021, 12, 2177-2182.	4.6	20
23	Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Research, 2008, 1, 314-320.	10.4	19
24	Optical Microfluidic Waveguides and Solution Lasers of Colloidal Semiconductor Quantum Wells. Advanced Materials, 2021, 33, e2007131.	21.0	19
25	Lowâ€Threshold Lasing from Copperâ€Doped CdSe Colloidal Quantum Wells. Laser and Photonics Reviews, 2021, 15, 2100034.	8.7	18
26	Light-Induced Paramagnetism in Colloidal Ag+-Doped CdSe Nanoplatelets. Journal of Physical Chemistry Letters, 2021, 12, 2892-2899.	4.6	17
27	Ultralow Threshold Optical Gain Enabled by Quantum Rings of Inverted Typeâ€I CdS/CdSe Core/Crown Nanoplatelets in the Blue. Advanced Optical Materials, 2021, 9, 2002220.	7.3	16
28	Spectrally Resolved Nonlinear Optical Properties of Doped <i>Versus</i> Undoped Quasi-2D Semiconductor Nanocrystals: Copper and Silver Doping Provokes Strong Nonlinearity in Colloidal CdSe Nanoplatelets. ACS Photonics, 2022, 9, 256-267.	6.6	15
29	Deepâ€Redâ€Emitting Colloidal Quantum Well Lightâ€Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure. Small, 2022, 18, e2106115.	10.0	15
30	Blue-Emitting CdSe Nanoplatelets Enabled by Sulfur-Alloyed Heterostructures for Light-Emitting Diodes with Low Turn-on Voltage. ACS Applied Nano Materials, 2022, 5, 1367-1376.	5.0	14
31	Mutual Energy Transfer in a Binary Colloidal Quantum Well Complex. Journal of Physical Chemistry Letters, 2019, 10, 5193-5199.	4.6	13
32	Persuasive Evidence for Electron–Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4437-4447.	4.6	12
33	Optically detected magnetic resonance in CdSe/CdMnS nanoplatelets. Nanoscale, 2020, 12, 21932-21939.	5.6	10
34	Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100860.	5.6	10
35	CdSe/CdMnS Nanoplatelets with Bilayer Core and Magnetically Doped Shell Exhibit Switchable Excitonic Circular Polarization: Implications for Lasers and Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 3151-3156.	5.0	9
36	MoS ₂ Phototransistor Sensitized by Colloidal Semiconductor Quantum Wells. Advanced Optical Materials, 2020, 8, 2001198.	7.3	8

#	Article	IF	CITATIONS
37	Singleâ€Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity. Laser and Photonics Reviews, 2021, 15, 2000479.	8.7	8
38	Impurity incorporation and exchange interactions in Co2+-doped CdSe/CdS core/shell nanoplatelets. Journal of Chemical Physics, 2019, 151, 224708.	3.0	4
39	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice. Advanced Optical Materials, 2022, 10, 2101756.	7.3	4
40	Solution Lasing: Optical Microfluidic Waveguides and Solution Lasers of Colloidal Semiconductor Quantum Wells (Adv. Mater. 10/2021). Advanced Materials, 2021, 33, 2170070.	21.0	2
41	Inverted Type-I CdS/CdSe Core/Crown colloidal quantum ring. , 2017, , .		1
42	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice (Advanced) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf 5