
Alexander O Berestetskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2688051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stagonolides Bâ^'F, Nonenolides Produced by <i>Stagonospora cirsii</i> , a Potential Mycoherbicide of <i>Cirsium arvense</i> . Journal of Natural Products, 2008, 71, 31-34.	1.5	85
2	Herbicidal Potential of Stagonolide, a New Phytotoxic Nonenolide from Stagonospora cirsii. Journal of Agricultural and Food Chemistry, 2007, 55, 7707-7711.	2.4	73
3	Stagonolides Gâ^'l and Modiolide A, Nonenolides Produced by <i>Stagonospora cirsii</i> , a Potential Mycoherbicide for <i>Cirsium arvense</i> . Journal of Natural Products, 2008, 71, 1897-1901.	1.5	68
4	Production of Phytotoxins byPhoma exiguavar.exigua, a Potential Mycoherbicide against Perennial Thistles. Journal of Agricultural and Food Chemistry, 2008, 56, 6304-6309.	2.4	53
5	Nonenolides and cytochalasins with phytotoxic activity against Cirsium arvense and Sonchus arvensis: A structure–activity relationships study. Phytochemistry, 2008, 69, 953-960.	1.4	46
6	Alternethanoxins A and B, Polycyclic Ethanones Produced by Alternaria sonchi, Potential Mycoherbicides for Sonchus arvensis Biocontrol. Journal of Agricultural and Food Chemistry, 2009, 57, 6656-6660.	2.4	40
7	Chenopodolans A–C: Phytotoxic furopyrans produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry, 2013, 96, 208-213.	1.4	34
8	Agropyrenol and agropyrenal, phytotoxins from Ascochyta agropyrina var. nana, a fungal pathogen of Elitrigia repens. Phytochemistry, 2012, 79, 102-108.	1.4	27
9	Papyracillic Acid, a Phytotoxic 1,6-Dioxaspiro[4,4]nonene Produced by Ascochyta agropyrina Var. <i>nana</i> , a Potential Mycoherbicide for Elytrigia repens Biocontrol. Journal of Agricultural and Food Chemistry, 2009, 57, 11168-11173.	2.4	24
10	Isolation and Bioactivity of Secondary Metabolites from Solid Culture of the Fungus, Alternaria sonchi. Biomolecules, 2020, 10, 81.	1.8	23
11	Fungi of the Genera Alternaria as Producers of Biological Active Compounds and Mycoherbicides. Applied Biochemistry and Microbiology, 2020, 56, 256-272.	0.3	18
12	Stagonolides J and K and Stagochromene A, Two New Natural Substituted Nonenolides and a New Disubstituted Chromene-4,5-dione Isolated from <i>Stagonospora cirsii</i> S-47 Proposed for the Biocontrol of <i>Sonchus arvensis</i> Journal of Agricultural and Food Chemistry, 2019, 67, 13040-13050.	2.4	17
13	Synthesis of natural phaeosphaeride A derivatives and an in vitro evaluation of their anti-cancer potential. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5566-5569.	1.0	16
14	Curvulin and Phaeosphaeride A from Paraphoma sp. VIZR 1.46 Isolated from Cirsium arvense as Potential Herbicides. Molecules, 2018, 23, 2795.	1.7	16
15	The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms, 2021, 9, 1379.	1.6	15
16	Alternethanoxins C–E, Further Polycyclic Ethanones Produced by <i>Alternaria sonchi</i> , a Potential Mycoherbicide for <i>Sonchus arvensis</i> Biocontrol. Journal of Agricultural and Food Chemistry, 2015, 63, 1196-1199.	2.4	14
17	On the metabolites produced by <i>Colletotrichum gloeosporioides</i> a fungus proposed for the <i>Ambrosia artemisiifolia</i> biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A. Natural Product Research, 2018, 32, 1537-1547.	1.0	13
18	Phomachalasins A–D, 26-oxa[16] and [15]cytochalasans produced by Phoma exigua var. exigua, a potential mycoherbicide for Cirsium arvense biocontrol. Tetrahedron, 2011, 67, 1557-1563.	1.0	11

#	Article	IF	CITATIONS
19	Effect of Adjuvants on Herbicidal Activity and Selectivity of Three Phytotoxins Produced by the Fungus, Stagonospora cirsii. Plants, 2020, 9, 1621.	1.6	11
20	Relation betweenIn Vitro production of ascosonchine and virulence of strains of the potential mycoherbicideAscochyta sonchi: a method for its quantification in complex samples. Phytochemical Analysis, 2006, 17, 357-364.	1.2	10
21	Chenopodolans E and F, two new furopyrans produced by Phoma chenopodiicola and absolute configuration determination of chenopodolan B. Tetrahedron, 2016, 72, 8502-8507.	1.0	10
22	Biological evaluation and determination of the absolute configuration of chloromonilicin, a strong antimicrobial metabolite isolated from Alternaria sonchi. Journal of Antibiotics, 2016, 69, 9-14.	1.0	10
23	The Metarhizium anisopliae Toxin, Destruxin A, Interacts with the SEC23A and TEME214 Proteins of Bombyx mori. Journal of Fungi (Basel, Switzerland), 2021, 7, 460.	1.5	10
24	Crystal structure of natural phaeosphaeride A. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o625-o626.	0.2	8
25	Synthesis of 7-(4-methylphenyl)thiomethyl and 7-morpholylmethyl derivatives of natural phaeosphaeride A and their cytotoxic activity. Mendeleev Communications, 2017, 27, 82-84.	0.6	8
26	Synthesis and Biological Evaluation of Phaeosphaeride A Derivatives as Antitumor Agents. Molecules, 2018, 23, 3043.	1.7	8
27	Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid. Journal of Fungi (Basel, Switzerland), 2021, 7, 774.	1.5	8
28	Comparative Analysis of the Biological Activity and Chromatographic Profiles of the Extracts of Beauveria bassiana and B. pseudobassiana Cultures Grown on Different Nutrient Substrates. Microbiology, 2018, 87, 200-214.	0.5	7
29	Production and Stabilization of Mycoherbicides. , 0, , .		6
30	Structure–Activity Relationship of Phytotoxic Natural 10-Membered Lactones and Their Semisynthetic Derivatives. Journal of Fungi (Basel, Switzerland), 2021, 7, 829.	1.5	6
31	Spectrum of Biological Activity of the Alternaria Fungi Isolated from the Phyllosphere of Herbaceous Plants. Microbiology, 2018, 87, 806-816.	0.5	5
32	Metabolite Profiles and Biological Activity of Extracts from Alternaria sonchi S-102 Culture Grown by Different Fermentation Methods. Applied Biochemistry and Microbiology, 2019, 55, 284-293.	0.3	5
33	Analysis and Isolation of Secondary Metabolites of Bipolarissorokiniana by Different Chromatography Techniques and the Spectrum of Their Biological Activity. Applied Biochemistry and Microbiology, 2020, 56, 569-582.	0.3	5
34	Destruxin A Interacts with Aminoacyl tRNA Synthases in Bombyx mori. Journal of Fungi (Basel,) Tj ETQq0 0 0 rg	BT /Qverloc	ck 10 Tf 50 14

35	Development of Mycoherbicides. , 2021, , 629-640.		5
36	Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 Produced on Liquid Media with Different Nitrogen Sources. Applied Biochemistry and Microbiology, 2019, 55, 556-562.	0.3	4

#	Article	IF	CITATIONS
37	Saponaroxins A–C, a new 19-oxa-tricyclohenicosatetraenone and, a new dioxacyclopropacycloundecene-10-carboaldehyde and its 6,7-dihydro derivative, produced by Alternaria saponariae, a pathogen of a medicinal plant Saponaria officinalis. Tetrahedron Letters, 2016, 57, 1702-1705.	0.7	3
38	The influence of the carbohydrate levels on viability of Stagonospora cirsii drying mycelium. BIO Web of Conferences, 2020, 18, 00028.	0.1	3
39	Evaluation of the anticancer activities of two fungal polycyclic ethanones, alternethanoxins A and B, and two of their derivatives. International Journal of Oncology, 2011, 38, 227-32.	3.9	3
40	Wintering ability of <i>Calophoma complanata</i> under the conditions of Saint Petersburg area. BIO Web of Conferences, 2020, 18, 00027.	0.1	2
41	Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 during Submerged Cultivation. Applied Biochemistry and Microbiology, 2021, 57, 226-235.	0.3	2
42	Effects of Substrate and Cultivation Duration on the Productivity, Biological Activity, and Chromatography Profiles of Extracts Obtained from Stagonospora cirsii S-47. Applied Biochemistry and Microbiology, 2020, 56, 78-90.	0.3	1