
Mingshu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2687624/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convenient Oneâ€Pot Synthesis of αâ€Amino Phosphonates in Water Using <i>p</i> â€Toluenesulfonic Acid as Catalyst for the Kabachnik–Fields Reaction. Heteroatom Chemistry, 2013, 24, 110-115.	0.7	13
2	BINOLs modified at 3, 3′-positions: chemists' preferred choice in asymmetric catalysis. Arkivoc, 2015, 2015, 140-174.	0.5	10
3	One-pot and highly regio-selective 1,3-dipole cycloaddition of azomethine ylide generated in situ to tetraethyl vinylidenebisphosphonate (VBP) catalyzed by cerium(iv) oxide. New Journal of Chemistry, 2014, 38, 3350-3353.	2.8	8
4	1,3-Dipolar Cycloaddition of 3-Amino Oxindole-Based Azomethine Ylides and O-Vinylphosphonylated Salicylaldehydes for Diastereoselective Synthesis of Oxindole Spiro-P,N-polycyclic Heterocycles. Synthesis, 2020, 52, 1387-1397.	2.3	7
5	Efficient Oneâ€Pot Synthesis of Novel Spirooxindoleâ€Fused Phosphorous Heterocycle Derivatives by a Threeâ€Component Domino Reaction. Heteroatom Chemistry, 2014, 25, 140-146.	0.7	6
6	P(OEt)3-Mediated Formal S–H Insertion: Reductive Couplings of Isatins with Thiols to Generate 3-Sulfenylated Oxindoles. Synthesis, 2020, 52, 2689-2697.	2.3	6
7	A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids. Beilstein Journal of Organic Chemistry, 2021, 17, 2321-2328.	2.2	6
8	Straightforward and one-pot synthesis of bifunctional phosphorus Betti bases under solvent-free conditions via phosphine oxide component. Tetrahedron Letters, 2015, 56, 5054-5056.	1.4	3