
Joël Teuscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2687457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012, 338, 643-647.	6.0	9,249
2	Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017, 11, 372-378.	15.6	871
3	Unreacted PbI ₂ as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343.	6.6	696
4	Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8, 250-255.	15.6	648
5	Lithium salts as "redox active―p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2572.	1.3	557
6	Influence of the Donor Size in Dâ~π–A Organic Dyes for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 5722-5730.	6.6	417
7	Significant Improvement of Dye‧ensitized Solar Cell Performance by Small Structural Modification in Ï€â€Conjugated Donor–Acceptor Dyes. Advanced Functional Materials, 2012, 22, 1291-1302.	7.8	404
8	Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 6850-6856.	6.6	383
9	11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 2017, 8, 15390.	5.8	229
10	Charge Density Dependent Mobility of Organic Holeâ€Transporters and Mesoporous TiO ₂ Determined by Transient Mobility Spectroscopy: Implications to Dye ensitized and Organic Solar Cells. Advanced Materials, 2013, 25, 3227-3233.	11.1	217
11	Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 5164-5169.	6.6	188
12	Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange. Chemistry of Materials, 2015, 27, 2181-2188.	3.2	179
13	Protic Ionic Liquids as p-Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells. Journal of the American Chemical Society, 2013, 135, 13538-13548.	6.6	167
14	Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.	3.2	154
15	Charge migration and charge transfer in molecular systems. Structural Dynamics, 2017, 4, 061508.	0.9	146
16	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	1.9	80
17	Molecular design of metal-free D–Ĩ€-A substituted sensitizers for dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 1757.	15.6	70
18	A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Advances, 2012, 2, 6846.	1.7	59

JoëL TEUSCHER

#	Article	IF	CITATIONS
19	Control and Study of the Stoichiometry in Evaporated Perovskite Solar Cells. ChemSusChem, 2015, 8, 3847-3852.	3.6	59
20	High Extinction Coefficient "Antenna―Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. Journal of Physical Chemistry C, 2008, 112, 7562-7566.	1.5	52
21	Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3786-3790.	2.1	52
22	Towards Longâ€Term Photostability of Solidâ€State Dye Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301667.	10.2	51
23	Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2642-2648.	3.2	49
24	Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 4950-4962.	2.5	49
25	Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates. Chemical Science, 2017, 8, 4371-4380.	3.7	40
26	Efavirenz-induced urolithiasis. Urological Research, 2006, 34, 288-289.	1.5	38
27	Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 956.	15.6	37
28	Dynamics of Photoinduced Interfacial Electron Transfer and Charge Transport in Dye-Sensitized Mesoscopic Semiconductors. Chimia, 2007, 61, 631.	0.3	35
29	Kinetics of the Regeneration by Iodide of Dye Sensitizers Adsorbed on Mesoporous Titania. Journal of Physical Chemistry C, 2014, 118, 17108-17115.	1.5	26
30	Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17090-17099.	1.5	24
31	Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups. Journal of Physical Chemistry C, 2020, 124, 7071-7081.	1.5	24
32	Dynamics of Photocarrier Separation in MAPbI ₃ Perovskite Multigrain Films under a Quasistatic Electric Field. Journal of Physical Chemistry C, 2016, 120, 19595-19602.	1.5	22
33	Optimizing the Energy Offset between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 19850-19858.	1.5	19
34	Organic dyes containing fused acenes as building blocks: Optical, electrochemical and photovoltaic properties. Chinese Chemical Letters, 2018, 29, 289-292.	4.8	18
35	Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26827-26833.	4.0	16
36	Dynamics and Mechanisms of Interfacial Photoinduced Electron Transfer Processes of Third Generation Photovoltaics and Photocatalysis. Chimia, 2011, 65, 704.	0.3	14

#	Article	IF	CITATIONS
37	Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems. Structural Dynamics, 2017, 4, 061503.	0.9	13
38	Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.	1.2	12
39	Unveiling the Nature of Charge Carrier Interactions by Electroabsorption Spectroscopy: An Illustration with Lead-Halide Perovskites. Chimia, 2017, 71, 231.	0.3	7