
Junxi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2687362/publications.pdf Version: 2024-02-01

ΙΠΝΧΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Temperature controllable optical switch for erbium-doped random fiber laser. Optics and Laser Technology, 2022, 148, 107772.	4.6	5
2	Thermal treatment effect on the random lasing polarization of polymer optical fiber. Optics and Laser Technology, 2022, 149, 107855.	4.6	2
3	Christiansen filters realized with cylindrical lenses ofeven symmetry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 431-439.	1.5	0
4	Ultrasensitive Glucose Biosensor Using Micro-Nano Interface of Tilted Fiber Grating Coupled With Biofunctionalized Au Nanoparticles. IEEE Sensors Journal, 2022, 22, 4122-4134.	4.7	10
5	Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes. Nanoscale, 2022, 14, 5356-5368.	5.6	4
6	Temperature Sensitivity of Polymer Fiber Microlasers. Photonic Sensors, 2022, 12, 1.	5.0	1
7	Stable and tunable single-mode lasers based on cholesteric liquid crystal microdroplets. Applied Optics, 2022, 61, 2937.	1.8	0
8	Tunable Plasmonic Random Laser Based on Emitters Coupled to Plasmonic Resonant Nanocavities of Silver Nanorod Arrays. Advanced Optical Materials, 2022, 10, .	7.3	7
9	Ligand-mediated CsPbBr _x I _{3â^'} _x /SiO ₂ quantum dots for red, stable and low-threshold amplify spontaneous emission. Nanotechnology, 2022, 33, 285201.	2.6	2
10	Tunable Plasmonic Random Laser Based on Emitters Coupled to Plasmonic Resonant Nanocavities of Silver Nanorod Arrays (Advanced Optical Materials 10/2022). Advanced Optical Materials, 2022, 10, .	7.3	0
11	Znl ₂ post-processing of CsPbBr ₃ quantum dots for red, stable, and low-threshold amplified spontaneous emission. Applied Physics Letters, 2022, 120, 221101.	3.3	0
12	Replica Symmetry Breaking in Cholesteric Liquid Crystal Bandgap Lasing. Annalen Der Physik, 2021, 533, 2000328.	2.4	4
13	Multi-Band Thermal Optical Switch Based on Nematic Liquid Crystal Filled Photonic Crystal Fiber. Journal of Lightwave Technology, 2021, 39, 3297-3302.	4.6	11
14	Tunable random laser in flexible hydrogel. Optical Materials, 2021, 115, 111027.	3.6	9
15	Waveguided nematic liquid crystal random lasers. Nanophotonics, 2021, 10, 3541-3547.	6.0	10
16	Tunable multi-mode laser based on robust cholesteric liquid crystal microdroplet. Optics Letters, 2021, 46, 5067.	3.3	3
17	Coherent Random Lasing Realized in Polymer Vesicles. Photonic Sensors, 2020, 10, 254-264.	5.0	6
18	Broadband Plasmonic Nanopolarizer Based on Different Surface Plasmon Resonance Modes in a Silver Nanorod. Crystals, 2020, 10, 447.	2.2	2

Junxi Zhang

#	Article	IF	CITATIONS
19	Multi-wavelength coherent random laser in bio-microfibers. Optics Express, 2020, 28, 5179.	3.4	20
20	Whispering gallery mode microlaser based on a single polymer fiber fabricated by electrospinning. Journal Physics D: Applied Physics, 2019, 52, 475104.	2.8	7
21	Polymer-fiber random lasers based on pumping radiation effect. Physica Scripta, 2019, 94, 115509.	2.5	5
22	Replica Symmetry Breaking in FRETâ€Assisted Random Laser Based on Electrospun Polymer Fiber. Annalen Der Physik, 2019, 531, 1900066.	2.4	11
23	Deep-ultraviolet to mid-infrared polarizers by Al nanowire metamaterials. Journal Physics D: Applied Physics, 2019, 52, 365102.	2.8	1
24	Eu2+-Activated Green-Emitting Phosphor Obtained from Eu3+ Ions doping Zeolite-3A in Air Surroundings and Its Efficient Green Light-Emitting Diodes. Nanoscale Research Letters, 2019, 14, 298.	5.7	6
25	The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye. Nanophotonics, 2018, 7, 1341-1350.	6.0	22
26	Plasmonic Resonators: Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes (Advanced Optical) Tj ETQqC	0.0 rgBT / 7.3	Oyerlock 10

27	Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731.	7.3	15
28	Wave Band Adjustable Infrared Filtering via Mott Transition of Nano Ti ₂ O ₃ . Advanced Engineering Materials, 2016, 18, 846-853.	3.5	3
29	Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Nanotechnology, 2016, 27, 415708.	2.6	13
30	Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4, 157.	25.5	102
	Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures.		
31	Advanced Functional Materials, 2012, 22, 835-841.	14.9	220
31	Advanced Functional Materials, 2012, 22, 835-841. Chitosan modified FeO nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water. Journal of Materials Chemistry, 2011, 21, 5877.	14.9 6.7	220 60
	Advanced Functional Materials, 2012, 22, 835-841. Chitosan modified FeO nanowires in porous anodic alumina and their application for the removal of		