Junxi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2687362/publications.pdf

Version: 2024-02-01

933447 610901 34 581 10 24 citations h-index g-index papers 34 34 34 997 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures. Advanced Functional Materials, 2012, 22, 835-841.	14.9	220
2	Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4, 157.	25. 5	102
3	Chitosan modified Fe0 nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water. Journal of Materials Chemistry, 2011, 21, 5877.	6.7	60
4	The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye. Nanophotonics, 2018, 7, 1341-1350.	6.0	22
5	Multi-wavelength coherent random laser in bio-microfibers. Optics Express, 2020, 28, 5179.	3.4	20
6	Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731.	7.3	15
7	Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Nanotechnology, 2016, 27, 415708.	2.6	13
8	Replica Symmetry Breaking in FRETâ€Assisted Random Laser Based on Electrospun Polymer Fiber. Annalen Der Physik, 2019, 531, 1900066.	2.4	11
9	Multi-Band Thermal Optical Switch Based on Nematic Liquid Crystal Filled Photonic Crystal Fiber. Journal of Lightwave Technology, 2021, 39, 3297-3302.	4.6	11
10	Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane. Chemical Physics Letters, 2004, 400, 158-162.	2.6	10
11	Waveguided nematic liquid crystal random lasers. Nanophotonics, 2021, 10, 3541-3547.	6.0	10
12	Ultrasensitive Glucose Biosensor Using Micro-Nano Interface of Tilted Fiber Grating Coupled With Biofunctionalized Au Nanoparticles. IEEE Sensors Journal, 2022, 22, 4122-4134.	4.7	10
13	Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics. Applied Optics, 2006, 45, 297.	2.1	9
14	Tunable random laser in flexible hydrogel. Optical Materials, 2021, 115, 111027.	3.6	9
15	Whispering gallery mode microlaser based on a single polymer fiber fabricated by electrospinning. Journal Physics D: Applied Physics, 2019, 52, 475104.	2.8	7
16	Tunable Plasmonic Random Laser Based on Emitters Coupled to Plasmonic Resonant Nanocavities of Silver Nanorod Arrays. Advanced Optical Materials, 2022, 10 , .	7.3	7
17	Coherent Random Lasing Realized in Polymer Vesicles. Photonic Sensors, 2020, 10, 254-264.	5.0	6
18	Eu2+-Activated Green-Emitting Phosphor Obtained from Eu3+ Ions doping Zeolite-3A in Air Surroundings and Its Efficient Green Light-Emitting Diodes. Nanoscale Research Letters, 2019, 14, 298.	5.7	6

#	Article	IF	CITATIONS
19	Polymer-fiber random lasers based on pumping radiation effect. Physica Scripta, 2019, 94, 115509.	2.5	5
20	Temperature controllable optical switch for erbium-doped random fiber laser. Optics and Laser Technology, 2022, 148, 107772.	4.6	5
21	Replica Symmetry Breaking in Cholesteric Liquid Crystal Bandgap Lasing. Annalen Der Physik, 2021, 533, 2000328.	2.4	4
22	Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes. Nanoscale, 2022, 14, 5356-5368.	5.6	4
23	Wave Band Adjustable Infrared Filtering via Mott Transition of Nano Ti ₂ O ₃ . Advanced Engineering Materials, 2016, 18, 846-853.	3.5	3
24	Tunable multi-mode laser based on robust cholesteric liquid crystal microdroplet. Optics Letters, 2021, 46, 5067.	3.3	3
25	Broadband Plasmonic Nanopolarizer Based on Different Surface Plasmon Resonance Modes in a Silver Nanorod. Crystals, 2020, 10, 447.	2.2	2
26	Thermal treatment effect on the random lasing polarization of polymer optical fiber. Optics and Laser Technology, 2022, 149, 107855.	4.6	2
27	Ligand-mediated CsPbBr _x I _{3â^'} _x /SiO ₂ quantum dots for red, stable and low-threshold amplify spontaneous emission. Nanotechnology, 2022, 33, 285201.	2.6	2
28	Plasmonic Resonators: Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes (Advanced Optical) Tj ETQq(0 0 0 rgBT 7.3	Oyerlock 10
29	Deep-ultraviolet to mid-infrared polarizers by Al nanowire metamaterials. Journal Physics D: Applied Physics, 2019, 52, 365102.	2.8	1
30	Temperature Sensitivity of Polymer Fiber Microlasers. Photonic Sensors, 2022, 12, 1.	5.0	1
31	Christiansen filters realized with cylindrical lenses ofeven symmetry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 431-439.	1.5	О
32	Stable and tunable single-mode lasers based on cholesteric liquid crystal microdroplets. Applied Optics, 2022, 61, 2937.	1.8	0
33	Tunable Plasmonic Random Laser Based on Emitters Coupled to Plasmonic Resonant Nanocavities of Silver Nanorod Arrays (Advanced Optical Materials 10/2022). Advanced Optical Materials, 2022, 10, .	7.3	O
34	Znl ₂ post-processing of CsPbBr ₃ quantum dots for red, stable, and low-threshold amplified spontaneous emission. Applied Physics Letters, 2022, 120, 221101.	3.3	0