
Martin W Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging Fluorescent Nuclear Pore Complex Proteins in C. elegans. Methods in Molecular Biology, 2022, 2502, 373-393.	0.9	0
2	Scanning Electron Microscopy (SEM) and Immuno-SEM of Nuclear Pore Complexes from Amphibian Oocytes, Mammalian Cell Cultures, Yeast, and Plants. Methods in Molecular Biology, 2022, 2502, 417-437.	0.9	2
3	NPC Structure in Model Organisms: Transmission Electron Microscopy and Immunogold Labeling Using High-Pressure Freezing/Freeze Substitution of Yeast, Worms, and Plants. Methods in Molecular Biology, 2022, 2502, 439-459.	0.9	2
4	Culturing Keratinocytes on Biomimetic Substrates Facilitates Improved Epidermal Assembly In Vitro. Cells, 2021, 10, 1177.	4.1	8
5	Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Scientific Reports, 2020, 10, 3142.	3.3	23
6	Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. Journal of Biological Chemistry, 2019, 294, 16241-16254.	3.4	30
7	Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells, 2019, 8, 120.	4.1	13
8	Supramolecular Structures of the Dictyostelium Lamin NE81. Cells, 2019, 8, 162.	4.1	7
9	The intestinal intermediate filament network responds to and protects against microbial insults and toxins. Development (Cambridge), 2019, 146, .	2.5	23
10	Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. Journal of Histochemistry and Cytochemistry, 2018, 66, 903-921.	2.5	20
11	Dynamic Structures of the Nuclear Pore Complex and Their Roles in Nucleocytoplasmic Transport. Nucleic Acids and Molecular Biology, 2018, , 27-44.	0.2	0
12	Nuclear pore complex tethers to the cytoskeleton. Seminars in Cell and Developmental Biology, 2017, 68, 52-58.	5.0	30
13	High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex. Methods in Molecular Biology, 2016, 1411, 441-459.	0.9	2
14	Immunoelectron Microscopy of Cryofixed Freeze-Substituted Yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 2016, 1474, 243-258.	0.9	4
15	Immunogold Labeling for Scanning Electron Microscopy. Methods in Molecular Biology, 2016, 1474, 309-325.	0.9	9
16	Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. Journal of Cell Science, 2014, 127, 124-36.	2.0	25
17	Imaging Yeast NPCs. Methods in Cell Biology, 2014, 122, 59-79.	1.1	6
18	Structural Organization of the Plant Nucleus: Nuclear Envelope, Pore Complexes and		0

Nucleoskeleton. , 2013, , 45-64.

0

MARTIN W GOLDBERG

#	Article	IF	CITATIONS
19	Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. Journal of Structural Biology, 2012, 177, 113-118.	2.8	36
20	System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. Journal of Cell Biology, 2011, 193, 109-123.	5.2	97
21	Nucleocytoplasmic transport in yeast: a few roles for many actors. Biochemical Society Transactions, 2010, 38, 273-277.	3.4	16
22	Molecular characterization of Xenopus lamin LIV reveals differences in the lamin composition of sperms in amphibians and mammals. Nucleus, 2010, 1, 85-95.	2.2	11
23	Immunoelectron Microscopy of Cryofixed Freeze-Substituted Saccharomyces cerevisiae. Methods in Molecular Biology, 2010, 657, 191-204.	0.9	10
24	Oocytes as an experimental system to analyze the ultrastructure of endogenous and ectopically expressed nuclear envelope components by field-emission scanning electron microscopy. Methods, 2010, 51, 170-176.	3.8	14
25	Immunogold Labelling for Scanning Electron Microscopy. Methods in Molecular Biology, 2010, 657, 297-313.	0.9	14
26	Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. Journal of Cell Science, 2010, 123, 2773-2780.	2.0	60
27	Nuclear envelope and nuclear pore complex structure and organization in tobacco BYâ€2 cells. Plant Journal, 2009, 59, 243-255.	5.7	140
28	A new model for nuclear lamina organization. Biochemical Society Transactions, 2008, 36, 1339-1343.	3.4	58
29	Filaments made from A- and B-type lamins differ in structure and organization. Journal of Cell Science, 2008, 121, 215-225.	2.0	149
30	Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. Journal of Structural Biology, 2007, 160, 224-235.	2.8	48
31	Nuclear Membrane Disassembly and Rupture. Journal of Molecular Biology, 2007, 369, 683-695.	4.2	28
32	A protocol for isolation and visualization of yeast nuclei by scanning electron microscopy (SEM). Nature Protocols, 2007, 2, 1943-1953.	12.0	17
33	Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. Journal of Cell Science, 2004, 117, 2481-2490.	2.0	127
34	Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. Journal of Structural Biology, 2004, 145, 272-288.	2.8	90
35	Import and export at the nuclear envelope. Symposia of the Society for Experimental Biology, 2004, , 115-33.	0.0	3
36	The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. Journal of Cell Biology, 2002, 158, 63-77.	5.2	181

MARTIN W GOLDBERG

#	Article	IF	CITATIONS
37	Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. European Journal of Cell Biology, 2002, 81, 623-633.	3.6	47
38	Steps of nuclear pore complex disassembly and reassembly during mitosis in early <i>Drosophila</i> embryos. Journal of Cell Science, 2001, 114, 3607-3618.	2.0	91
39	Ran alters nuclear pore complex conformation. Journal of Molecular Biology, 2000, 300, 519-529.	4.2	36
40	The Nuclear Pore Complex: Structure, Function, and Dynamics. Critical Reviews in Eukaryotic Gene Expression, 2000, 10, 12.	0.9	30
41	Temporal Differences in the Appearance of NEP-B78 and an LBR-like Protein during Xenopus Nuclear Envelope Reassembly Reflect the Ordered Recruitment of Functionally Discrete Vesicle Types. Journal of Cell Biology, 1999, 144, 225-240.	5.2	67
42	Three-Dimensional Visualization of the Route of Protein Import: The Role of Nuclear Pore Complex Substructures. Experimental Cell Research, 1997, 232, 146-160.	2.6	45
43	Nuclear Pore Complex Structure in Birds. Journal of Structural Biology, 1997, 119, 284-294.	2.8	20
44	The Nuclear Pore Complex and Lamina: Three-dimensional Structures and Interactions Determined by Field Emission In-lens Scanning Electron Microscopy. Journal of Molecular Biology, 1996, 257, 848-865.	4.2	126
45	The use of field emission in-lens scanning electron microscopy to study the steps of assembly of the nuclear envelope in vitro. Journal of Structural Biology, 1992, 108, 257-268.	2.8	24